Computational experiment for a class of mathematical models of magnetohydrodynamics

Бесплатный доступ

The first initial-boundary value problem for the system modelling the motion of the incompressible viscoelastic Kelvin - Voigt fluid in the magnetic field of the Earth is investigated considering that the fluid is under external influence. The problem is studied under the assumption that the fluid is under different external influences depending not only on the coordinates of the point in space but on time too. In the framework of the theory of semi-linear Sobolev type equations the theorem of existence and uniqueness of the solution of the stated problem is proved. The solution itself is a quasi-stationary semi-trajectory. The description of the problem's extended phase space is obtained. The results of the computainal experiment are presented.

Еще

Magnetohydrodynamics, sobolev type equations, extended phase space, incompressible viscoelastic fluid, explicit one-step formulas of runge - kutta

Короткий адрес: https://sciup.org/147159408

IDR: 147159408   |   DOI: 10.14529/mmp170110

Список литературы Computational experiment for a class of mathematical models of magnetohydrodynamics

  • Hide, R. On Planetary Atmospheres and Interiors/R. Hide//Mathematical Problems in the Geophysical Sciences. -American Mathematical Society, 1971.
  • Сукачева, Т.Г. Фазовое пространство одной модели магнитогидродинамики/Т.Г. Сукачева, А.О. Кондюков//Дифференциальные уравнения. -2015. -Т. 51, № 4. -С. 495-501.
  • Kadchenko, S.I. Numerical Study of a Flow of Viscoelastic Fluid of Kelvin -Voigt Having Zero Order in a Magnetic Field/S.I. Kadchenko, A.O. Kondyukov//Journal of Computational and Engineering Mathematics. -2016. -V. 3, № 2. -P. 40-47.
  • Sukacheva T.G. On a Class of Sobolev Type Equations/T.G. Sukacheva, A.O. Kondyukov//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2014. -Т. 7, № 4. -С. 5-21.
  • Численное моделирование течения вязкоупругой электропроводной жидкости в магнитном поле/Кондюков А.О., Кадченко С.И., Какушкин С.Н.; правообладатель: ФГБОУ ВО Новгородсикй государственный университет имени Ярослава Мудрого. -2016619268, зарегистр. 17.08.2016, реестр программ для ЭВМ.
Краткое сообщение