Derivations on Banach *-ideals in von Neumann algebras
Автор: Ber Aleksey Feliksovich, Chilin Vladimir Ivanovich, Sukochev Fedor Anatolevich
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 2 т.20, 2018 года.
Бесплатный доступ
It is known that any derivation δ:M→M on the von Neumann algebra M is an inner, i.e. δ(x):=δa(x)=[a,x]=ax-xa, x∈M, for some a∈M. If H is a separable infinite-dimensional complex Hilbert space and K(H) is a C∗-subalgebra of compact operators in C∗-algebra B(H) of all bounded linear operators acting in H, then any derivation δ:K(H)→K(H) is a spatial derivation, i.e. there exists an operator a∈B(H) such that δ(x)=[x,a] for all x∈K(H). In addition, it has recently been established by Ber A. F., Chilin V. I., Levitina G. B. and Sukochev F. A. (JMAA, 2013) that any derivation δ:E→E on Banach symmetric ideal of compact operators E⊆K(H) is a spatial derivation. We show that the same result is also true for an arbitrary Banach ∗-ideal in every von Neumann algebra M. More precisely: If M is an arbitrary von Neumann algebra, E be a Banach ∗-ideal in M and δ:E→E is a derivation on E, then there exists an element a∈M such that δ(x)=[x,a] for all x∈E, i.e. δ is a spatial derivation.
Von neumann algebra, banach ∗-ideal, derivation, spatial derivation
Короткий адрес: https://sciup.org/143162467
IDR: 143162467 | DOI: 10.23671/VNC.2018.2.14715
Список литературы Derivations on Banach *-ideals in von Neumann algebras
- Ber A. F., Chilin V. I. and Levitina G. B. Derivations with values in quasi-normed bimodules of locally measurable operators//Sib. Adv. Math. 2015. Vol. 25, № 3. P. 169-178 DOI: 10.3103/S1055134415030025
- Ber A. F., Chilin V. I., Levitina G. B. and Sukochev F. A. Derivations with values in quasi-normed bimodules of locally measurable operators//J. Math. Anal. Appl. 2013. Vol. 397, № 2. P. 628-643 DOI: 10.101610/j.jmaa.2012.07.068
- Bratelli O., Robinson D. W. Operator algebras and quantum statistical mechanics 1. N.Y.: Springer-Verlag, 1979.
- Chilin V. I., Levitina G. B. Derivations on ideals in commutative AW∗-algebras//Sib. Adv. Math. 2014. Vol. 24, № 1. P. 26-42. DOI.10.3103/S1055134414010040.
- Gohberg I., Krein M. Introduction to the theory of linear nonselfadjoint operators. Providence (R.I.): Amer. Math. Soc., 1969. (Translat. of Math. Monogr. Vol. 18).
- Kalton N., Sukochev F. Symmetric norms and spaces of operators//J. Reine Angew. Math. 2008. Vol. 621. P. 81-121.
- Kusraev A. G. Automorphisms and derivations on a universally complete complex f-algebra//Sib. Math. J. 2006. Vol. 47, № 1. P. 77-85 DOI: 10.1007/s11202-006-0010-0
- Sakai S. C∗-Algebras and W∗-Algebras. N.Y.-Heidelberg-Berlin: Springer-Verlag, 1971.
- Schatten R. Norm ideals of completely continuous operators. Second printing. Berlin-N.Y.: Springer-Verlag, 1970. 98 p. (Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 27).
- Simon B. Trace ideals and their applications. Second edition. Providence (R.I.): Amer. Math. Soc., 2005. (Math. Surveys and Monogr. Vol. 120).
- Stratila S., Zsido L. Lectures on von Neumann algebras. Revision of the 1975 original. Translated from the Romanian by Silviu Teleman. Bucharest: Editura Academiei, 1979.
- Zsido L. The norm of a derivation in a W∗-algebra//Proc. Amer. Math. Soc. 1973. Vol. 38. P. 147-150.
- Takesaki M. Theory of operator algebras I. N.Y.-Heidelberg-Berlin: Springer-Verlag, 1979.