Double logarithmic stability in the identification of a scalar potential by a partial elliptic Dirichlet-to-Neumann map
Автор: Choulli M., Kian Y., Soccorsi E.
Рубрика: Математическое моделирование
Статья в выпуске: 3 т.8, 2015 года.
Бесплатный доступ
We examine the stability issue in the inverse problem of determining a scalar potential appearing in the stationary Schrödinger equation in a bounded domain, from a partial elliptic Dirichlet-to-Neumann map. Namely, the Dirichlet data is imposed on the shadowed face of the boundary of the domain and the Neumann data is measured on its illuminated face. We establish a log log stability estimate for the L2-norm (resp. the H-1-norm) of Ht, for t>0, and bounded (resp. L2) potentials.
Inverse problem, stability, schrödinger equation
Короткий адрес: https://sciup.org/147159332
IDR: 147159332 | DOI: 10.14529/mmp150305
Список литературы Double logarithmic stability in the identification of a scalar potential by a partial elliptic Dirichlet-to-Neumann map
- Lions J.-L., Magenes E. Non-Homogenuous Boundary Value Problems and Applications. I. Springer, Berlin, 1972.
- Calderón A. On an Inverse Boundary Problem. Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeíro, 1980, pp. 65-73.
- Sylvester J., Uhlmann G. A Global Uniqueness Theorem for an Inverse Boundary Value Problem. Ann. of Math., 1987, vol. 125, pp. 153-169. DOI: DOI: 10.2307/1971291
- Alessandrini G. Stable Determination of Conductivity by Boundary Measurements. Appl. Anal., 1988, vol. 27, pp. 153-172. DOI: DOI: 10.1080/00036818808839730
- Mandache N. Exponential Instability in an Inverse Problem for the Schrodinger Equation. Inverse Problems, 2001, vol. 17, pp. 1435-1444. DOI: DOI: 10.1088/0266-5611/17/5/313
- Bukhgeim A.L., Uhlmann G. Recovering a Potential from Partial Cauchy Data. Commun. Part. Diff. Equat., 2002, vol. 27, pp. 653-658. DOI: DOI: 10.1081/PDE-120002868
- Kenig C.E., Sjöstrand J., Uhlmann G. The Calderòn Problem with Partial Data. Ann. of Math., 2007, vol. 165, pp. 567-791. DOI: DOI: 10.4007/annals.2007.165.567
- Nachman A., Street B. Reconstruction in the Calderòn Problem with Partial Data. Commun. Part. Diff. Equat., 2010, vol. 35, pp. 375-390. DOI: DOI: 10.1080/03605300903296322
- Heck H., Wang J.-N. Stability Estimate for the Inverse Boundary Value Problem by Partial Cauchy Data. Inv. Probl., 2006, vol. 22, pp. 1787-1797. DOI: DOI: 10.1088/0266-5611/22/5/015
- Caro P., Dos Santos Ferreira D., Ruiz A. Stability Estimates for the Calderón Problem with Partial Data. arXiv:1405.1217.
- Caro P., Dos Santos Ferreira D., Ruiz A. Stability Estimates for the Radon Transform with Restricted Data and Applications. arXiv:1211.1887v2.
- Apraiz J., Escauriaza L., Wang G., Zhang C. Observability Inequalities and Measurable Sets. arXiv:1002.4876.
- Alessandrini G., Gaburro R. The Local Calderon Problem and the Determination at the Boundary of the Conductivity. Commun. Partial Differ. Equat., 2009, vol. 34, no. 8, pp. 918-936. DOI: DOI: 10.1080/03605300903017397
- Dautray R., Lions J.-L. Mathematical Analysis and Numerical Methods for Science and Technology. II. Berlin, Springer-Verlag, 1988. DOI: DOI: 10.1007/978-3-642-61566-5