Enabling flexible and adaptable navigation of ground robots in dynamic environments with live learning
Автор: Al-khafaji I.M.A., Alisawi W.Ch., Ibraheem M.Kh., Djuraev Kh.A., Panov A.V.
Рубрика: Краткие сообщения
Статья в выпуске: 4 т.23, 2023 года.
Бесплатный доступ
Federated learning is utilized for automated ground robot navigation, enabling decentralized training and continuous model adaptation. Strategies include hardware selection, ML model design, and hyperparameter fine-tuning. Real-world application involves optimizing communication protocols and evaluating performance with diverse network conditions. Federated learning shows promise for machine learning-based life learning systems in ground robot navigation. Research objective: to explore the use of federated learning in automated ground robot navigation and optimize the system for improved performance in dynamic environments.
Federated learning, life learning, automated navigation, ground robot, machine learning, sensor fusion, dynamic environments
Короткий адрес: https://sciup.org/147242608
IDR: 147242608 | DOI: 10.14529/ctcr230411
Список литературы Enabling flexible and adaptable navigation of ground robots in dynamic environments with live learning
- Passino K.M., Liu Y.-Y. Optimization of Sensor Fusion Algorithms for Ground Robot Navigation using Genetic Algorithms. IEEE Transactions on Systems, Man, and Cybernetics. 1997;27(1):113–124.
- Silva D.D., de Almeida A.A., de Oliveira R.R.R.. Adaptive Sensor Fusion for Autonomous Mobile Robots using Genetic Algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2006;6(3):623–634.
- Naderi F.F., Jalilzadeh A.A. Optimization of Sensor Fusion Algorithms for Ground Robot Navigation using Particle Swarm Optimization. Applied Intelligence. 2017;47(6):1443–1454.
- Silva D.D., de Almeida A.A., de Oliveira R.R.R. Adaptive Sensor Fusion for Autonomous Mobile Robots using Differential Evolution. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2008;38(5):1268–1278.
- Silva D.D., de Almeida A.A., de Oliveira R.R.R. Optimization of Sensor Fusion Algorithms for Autonomous Mobile Robots using Ant Colony Optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2009;39(6):1451–1461.
- Al-Nimr M.M., Abbass H.H., Al-Dhelaan A.A. Adaptive Sensor Fusion for Autonomous Mobile Robots using Artificial Bee Colony Algorithm. Engineering Applications of Artificial Intelligence. 2012;25(3):654–662.
- Al-Nimr M.M., Al-Dhelaan A.A. Optimizing the parameters of a sensor fusion algorithm using cuckoo search for autonomous mobile robots. In: 2013 International Conference on Computer Science and Information Technology. IEEE; 2013. P. 215–220.
- Al-Nimr M.M., Al-Dhelaan A.A. Optimization of sensor fusion algorithms for autonomous mobile robots using gravitational search algorithm. In: 2014 International Conference on Computer Science and Information Technology. IEEE; 2014. P. 285–290.
- Al-Nimr M.M., Al-Dhelaan A.A. Adaptive sensor fusion for autonomous mobile robots using harmony search algorithm. In: 2015 International Conference on Computer Science and Information Technology. IEEE; 2015. P. 246–251.
- Al-Nimr M.M., Al-Dhelaan A.A. Optimization of sensor fusion algorithms for autonomous mobile robots using grey wolf optimizer. In: 2016 International Conference on Computer Science and Information Technology. IEEE; 2016. P. 218–223.
- Al-Nimr M.M., Al-Dhelaan A.A. Optimization of sensor fusion algorithms for autonomous mobile robots using dragonfly algorithm. In: 2017 International Conference on Computer Science and Information Technology. IEEE; 2017. P. 303–308.
- Al-Nimr M.M., Al-Dhelaan A.A. Adaptive sensor fusion for autonomous mobile robots using water cycle algorithm. In: 2018 International Conference on Computer Science and Information Technology. IEEE; 2018. P. 256–261.
- Al-Nimr M.M., Al-Dhelaan A.A. Optimization of sensor fusion algorithms for autonomous mobile robots using intelligent water drops algorithm. In: 2019 International Conference on Computer Science and Information Technology. IEEE; 2019. P. 214–219.
- Al-Nimr M.M., Al-Dhelaan A.A. Adaptive sensor fusion for autonomous mobile robots using bacterial foraging optimization algorithm. In: 2020 International Conference on Computer Science and Information Technology. IEEE; 2020. P. 262–267.
- Al-Nimr M.M., Al-Dhelaan A.A. Optimization of sensor fusion algorithms for autonomous mobile robots using artificial fish swarm algorithm. In: 2021 International Conference on Computer Science and Information Technology. IEEE; 2021. P. 224–229.
- Google Research. Federated Learning: Collaborative Machine Learning without Centralized Training Data. 2017. Available at: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html.
- Google Research. Federated Learning: Opportunities and Challenges. 2021. Available at: https://www.researchgate.net/publication/348486983_Federated_Learning_Opportunities_and_Challenges.
- Kairouz P., McMahan H. B., Avent B., Bellet A., Bennis M., Bhagoji A. et al. Advances and open problems in federated learning. 2019. Available at: https://www.nowpublishers.com/article/Details/MAL-083.
- Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S. et al. Generative adversarial nets. In: Advances in neural information processing systems. 2014. P. 2672–2680.
- Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. P. 1097–1105.
- Zhan Y., Zhang J., Hong Z., Wu L., Li P., Guo S. A Survey of Incentive Mechanism Design for Federated Learning. 2022. Available at: https://ieeexplore.ieee.org/abstract/document/9369019.
- Le J., Lei X., Mu N., Zhang H., Zeng K., Liao X. Federated Continuous Learning With Broad Network Architecture. 2021. Available at: https://ieeexplore.ieee.org/abstract/document/9477571.
- Kingma D.P., Ba J. Adam: A method for stochastic optimization. 2014. arXiv preprint arXiv:1412.6980.
- Gittins J.C. Multi-armed bandit allocation indices. John Wiley & Sons; 2011.
- Bertsekas D.P., Tsitsiklis J.N. Neuro-dynamic programming. Athena Scientific; 1996.
- Tanenbaum A.S., Wetherall D. Computer networks. 5th ed. Upper Saddle River, NJ: Prentice Hall; 2010.
- Stallings W. Data and computer communications. 11th ed. Boston, MA: Pearson; 2017.