Evaluation of the docking algorithm based on tensor train global optimization

Бесплатный доступ

Effectiveness of modern rational new drugs development is connected with accurate modelling of binding between target-proteins responsible for the disease and small molecules (ligands) candidates to become drugs. The main modeling tools are docking programs for positioning of the ligands in the target proteins. Ligand positioning is realized in the frame of the docking paradigm: the ligand binds to the protein in the pose corresponding to the global energy minimum on the complicated multidimensional energy surface of the protein-ligand system. Docking algorithm on the base of the novel method of tensor train global optimization is presented. The respective novel docking program SOL-T is validated on the set of 30 protein-ligand complexes with known 3D structures. The energy of the protein-ligand system is calculated in the frame of MMFF94 force field. SOL-T performance is compared with the results of exhaustive low energy minima search carried out by parallel FLM docking program on the base of Monte Carlo method using large supercomputer resources. It is shown that SOL-T docking program is about 100 times faster than FLM program, and SOL-T is able to find the global minimum (found by FLM docking program) for 50% of investigated protein-ligand complexes. Dependence of SOL-T performance on the rank of tensor train decomposition is investigated, and it is shown that SOL-T with rank 16 has almost the same performance as SOL-T with rank 64. It is shown that the docking paradigm is true not for all investigated complexes in the frame of MMFF94 force field.

Еще

Docking, global optimization, tensor train, protein-ligand complex, drug design

Короткий адрес: https://sciup.org/147159347

IDR: 147159347   |   DOI: 10.14529/mmp150407

Список литературы Evaluation of the docking algorithm based on tensor train global optimization

  • Mobley D.L., Dill K.A. The Binding of Small-Molecule Ligands to Proteins: "What You See" is not Always "What You Get". Structure, 2009, vol. 17, no. 4, pp. 489-498. DOI: DOI: 10.1016/j.str.2009.02.010
  • Sadovnichii V.A., Sulimov V.B. Supercomputing Technologies in Medicine. Supercomputing Technologies in Science, Education, and Industry, Moscow, Moscow University Publishing, 2009, pp. 16-23.
  • Merz K.M., Ringe D., Reynolds C.H., eds. Drug Design: Structure and Ligand-Based Approaches. Cambridge, Cambridge University Press, 2010. DOI: DOI: 10.1017/CBO9780511730412
  • Plewczynski D., Lazniewski M., Augustyniak R., Ginalski K. Can We Trust Docking Results? Evaluation of Seven Commonly Used Programs on PDBbind Database. Journal of Computational Chemistry 2011, vol. 32, pp. 742-755. DOI: DOI: 10.1002/jcc.21643
  • Klimovich P.V., Shirts M.R., Mobley D.L. Guidelines for the Analysis of Free Energy Calculations. Journal of Computer-Aided Molecular Design, 2015, vol. 29, no. 5, pp. 397-411. DOI: DOI: 10.1007/s10822-015-9840-9
  • Chen W., Gilson M.K., Webb S.P., Potter M.J. Modeling Protein-Ligand Binding by Mining Minima. Journal of Chemical Theory and Computation, 2010, vol. 6, no. 11, pp. 3540-3557. DOI: DOI: 10.1021/ct100245n
  • Allen W.J., Balius T.E., Mukherjee S., Brozell S.R., Moustakas D.T., Lang P.T., Case D.A., Kuntz I.D., Rizzo R.C. DOCK6: Impact of New Features and Current Docking Performance. Journal of Computational Chemistry, 2015, vol. 36, no. 15, pp. 1132-1156. DOI: DOI: 10.1002/jcc.23905
  • Oseledets I.V., Tyrtyshnikov E.E. Breaking the Curse of Dimensionality, or How to Use SVD in Many Dimensions. SIAM Journal on Scientific Computing, 2009, vol. 31, no. 5, pp. 3744-3759. DOI: DOI: 10.1137/090748330
  • Halgren T.A. Merck Molecular Force Field. 1. Basis, Form, Scope, Parameterization and Performance of MMFF94. Journal of Computational Chemistry, 1996, vol. 17, pp. 490-519. DOI: 10.1002/(SICI)1096-987X(199604)17:5/63.0.CO;2-P
  • Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M. Jr., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 1995, vol. 117, pp. 5179-5197. DOI: DOI: 10.1021/ja00124a002
  • Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of the American Chemical Society, 1996, vol. 118, no. 45, pp. 11225-11236. DOI: DOI: 10.1021/ja9621760
  • Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I., Mackerell A.D. Jr. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. Journal of Computational Chemistry, 2010, vol. 31, no. 4, pp. 671-690. DOI: DOI: 10.1002/jcc.21367
  • Sulimov A.V., Kutov D.C., Oferkin I.V., Katkova E.V., Sulimov V.B. Application of the Docking Program SOL for CSAR Benchmark. Journal of Chemical Information and Modeling, 2013, vol. 53, no. 8, pp. 1946-1956. DOI: DOI: 10.1021/ci400094h
  • Sinauridze E.I., Romanov A.N., Gribkova I.V., Kondakova O.A., Surov S.S., Gorbatenko A.S., Butylin A.A., Monakov M.Yu., Bogolyubov A.A., Kuznetsov Yu.V., Sulimov V.B., Ataullakhanov F.I. New Synthetic Thrombin Inhibitors: Molecular Design and Experimental Verification. PLoS ONE, 2011, vol. 6, no. 5, e19969. DOI: DOI: 10.1371/journal.pone.0019969
  • Sulimov V.B., Katkova E.V., Oferkin I.V., Sulimov A.V., Romanov A.N., Roschin A.I., Beloglazova I.B., Plekhanova O.S., Tkachuk V.A., Sadovnichiy V.A. Application of Molecular Modeling to Urokinase Inhibitors Development. BioMed Research International, 2014, vol. 2014, Article ID 625176, 15 p. DOI: DOI: 10.1155/2014/625176
  • Oseledets I.V. Tensor-Train Decomposition. SIAM Journal on Scientific Computing, 2011, vol. 33, no. 5, pp. 2295-2317. DOI: DOI: 10.1137/090752286
  • Oseledets I.V., Tyrtyshnikov E.E. TT-Cross Approximation for Multidimensional Arrays. Linear Algebra and its Applications, 2010, vol. 432, no. 1, pp. 70-88. DOI: DOI: 10.1016/j.laa.2009.07.024
  • TTDock: метод докинга на основе тензорных поездов/Д.А. Желтков, И.В. Оферкин, Е.В. Каткова, А.В. Сулимов, В.Б. Сулимов, Е.Е. Тыртышников//Вычислительные методы и программирование. -2013. -Т. 14. -С. 279-291.
  • Желтков, Д.А. Увеличение размерности в методе докинга на основе тензорных поездов/Д.А. Желтков, Е.Е. Тыртышников//Вычислительные методы и программирование. -2013. -Т. 14. -С. 292-293.
  • Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L. Pseudo-Skeleton Approximations of Matrices. Reports of Russian Academy of Sciences, 1995, vol. 342, no. 2, pp. 151-152.
  • Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L. A Theory of Pseudo-Skeleton Approximations. Linear Algebra Appl., 1997, vol. 261, pp. 1-21. DOI: DOI: 10.1016/S0024-3795(96)00301-1
  • Tyrtyshnikov E.E. Incomplete Cross Approximation in the Mosaic-Skeleton Method. Computing, 2000, vol. 64, no. 4, pp. 367-380. DOI: DOI: 10.1007/s006070070031
  • Goreinov S.A., Tyrtyshnikov E.E. The Maximal-Volume Concept in Approximation by Low-Rank Matrices. Contemporary Mathematics, 2001, vol. 208, pp. 47-51. DOI: DOI: 10.1090/conm/280/4620
  • Goreinov S.A., Oseledets I.V., Savostyanov D.V., Tyrtyshnikov E.E., Zamarashkin N.L. How to Find a Good Submatrix. Research Report 08-10, ICM HKBU, Kowloon Tong, Hong Kong, 2008.
  • Желтков, Д.А. Параллельная реализация матричного крестового метода/Д.А. Желтков, Е.Е. Тыртышников//Вычислительные методы и программирование. -2015. -Т. 16. -С. 369-375.
  • Protein Data Bank. Available at: http://www.rcsb.org/(accessed September 21, 2015).
  • Moscow University Supercomputing Center. URL: http://hpc.msu.ru/(accessed September 21, 2015).
  • Byrd R.H., Lu P., Nocedal J., Zhu C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput., 1995, vol. 16, no. 5, pp. 1190-1208. DOI: DOI: 10.1137/0916069
  • Zhu C., Byrd R.H., Lu P., Nocedal J. Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization. ACM Transactions on Mathematical Software, 1997, vol. 23, no. 4, pp. 550-560. DOI: DOI: 10.1145/279232.279236
  • APLITE Program, Dimonta. Available at: http://dimonta2.1gb.ru/en/node/55 (accessed September 21, 2015).
  • Avogadro: an Open-Source Molecular Builder and Visualization Tool. Version 1. XX. Available at: http://avogadro.openmolecules.net/(accessed September 21, 2015).
Еще
Статья научная