Existence of a Local Renormalized Solution of an Elliptic Equation with Variable Exponents in Rn
Автор: Kozhevnikova L.M.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 2 т.27, 2025 года.
Бесплатный доступ
The article is devoted to the study of second-order quasilinear elliptic equations with variable nonlinearity exponents and a locally integrable right-hand side in the space Rn. The author adapts the concept of a locally renormalized solution for equations with variable growth exponents, generalizing the results of M. F. Bidaut-V´eron and L. V´eron obtained for equations with constant exponents. The work establishes conditions on the structure of the quasilinear elliptic operator with variable growth that are sufficient for the correct definition of a locally renormalized solution. The author derives a priori local estimates characterizing the regularity of the solution and, based on these, proves the existence of a locally renormalized solution in the space Rn without additional restrictions on its growth at infinity. Furthermore, the work demonstrates that for a non-negative right-hand side, the solution is also nonnegative almost everywhere. The research employs methods of functional analysis, including the theory of Lebesgue and Sobolev spaces with variable exponents. The proofs are based on compactness and monotonicity techniques, as well as the use of special test functions. The results of the work are significant for the theory of nonlinear elliptic equations and can be applied to further studies of degenerate equations and problems with measure-valued data. The study contributes to the development of analytical methods for equations with variable nonlinearity exponents and expands the applicability of the concept of locally renormalized solutions.
Local renormalized solution, quasilinear elliptic equation, variable exponent in nonlinearity, existence of solution
Короткий адрес: https://sciup.org/143184449
IDR: 143184449 | DOI: 10.46698/j2148-7740-8991-e
Текст научной статьи Existence of a Local Renormalized Solution of an Elliptic Equation with Variable Exponents in Rn
In R n = { x = ( x i ,X 2 , • • • ,x n ) } , n ^ 2 , we consider the following second-order quasilinear elliptic equation with variable growth and a locally summable function f :
(0 2025 Kozhevnikova, L. M.
The concept of a renormalized solution is an important tool for studying large classes of degenerate elliptic equations with data in the form of a measure. The original definition is given in [1] for the Dirichlet problem
—diva(x, Vu) = ^, x G Q, u = 0, x G dQ, (2)
and it was extended by M. F. Bidaut-Veron [2] to a local form for an equation with the p -Laplacian, absorption, and a Radon measure µ :
—
A
p
u
+
|
u
|
p
0
-
2
u
=
^,
p
G
(1
,n
)
,
0
—
1
< p
0
.
(3)
In particular, M. F. Bidaut-Veron proved the existence of a local renormalized solution in
R
n
of the equation with
^
G
L
i
,
ioc
(
R
n
). In the monograph [3], L. Veron generalized the concept of a local renormalized solution for an equation with power type nonlinearities of the form
—
div a(x
,
V
u
) +
b
(x
,
u,
V
u)
=
^.
In the present work, the concept of a local renormalized solution is adapted to the equation (1) with variable growth exponents. We prove the existence of a local renormalized solution of the equation (1) in
R
n
and establish its sign-definiteness.
1. Lebesgue and Sobolev Spaces with Variable Exponents
In this section, we provide the necessary information from the theory of spaces with variable exponents. For
Q
C
R
n
, denote
Li(Q) = {P G L^(Q) : 1 < P- < P+ < +M, where p- = vrai infxeQ p(x) and p+ = vrai supxeQ p(x). Taking p0 G L+(Q), we define the Lebesgue space Lp(^)(Q) as the set of measurable real-valued functions v on Q such that Pp^,Q(v) = / |v(x)|P(x) dx < x, Q with the Luxemburg norm ||v||lp0(q) = ||v||p0,Q = inf {k > 0 : Pp(^)(v/k) C 1} . For v G Lp(^)(Q), the following relations are valid:
IHiPo,Q
—
1
c
PpUqW
c
l|v|iP
(
+
)
,Q
+ 1
.
Due to convexity, the following inequality holds:
|
y
+
z
|
p
(x)
c
2
p
+
-
1
(|
y
|
p
(x)
+
|
z
|
p
(x)
)
,
z,y
G
R,
x
G
Q.
(4)
For
p
-
>
1, we have the Young inequality
Ы
C |
y
|
p
(x)
+
|
z
|
p
‘
(x)
,
z,y
G
R, p
’G
) =
-p^-,
x
G
Q.
(5)
P(J
—
1
Let us define the Sobolev space with variable exponent W^(Q) = {v G Lp^Q) : |Vv| G Lp^Q)} with the norm ||v||p0,Q = l|v||p0,Q + l|VvHp(•),Q• The space Wp^CQ) is defined as the completion of C“(Q) with respect to the norm || • Hw1 (q)- The spaces Lp(^)(Q), Wp^^Q), Wp^CQ) are separable, Banach, and reflexive for p- > 1 (see [4, Chapter 3, §3.2, §3.4, §8.1]).
For two bounded functions
q
(
^
)
, r
()
G
C
(
Q
) we write
q
(
^
)
< r
(), provided inf
x
e
Q
(
r
(x)
—
q
(x))
>
0. Let
C
+
(
Q
) =
{
p
G
C(
Q)
: 1
< p
-
C
p
+
<
+^
}
,
where
p
-
= inf
xE
q
p(x), P
+
= suP
x
e
Q
p
(x)
.
Lemma 1
[5]
.
Let Q be bounded,
pG
)
,q(9
G
C
+
(
Q
)
, p
+
< n, qO <
p
*
() =
nnp^
•
Then the embedding
W
p
(
.
)
(
Q
)
H
L
q
()
(Q) is continuous and compact.
2. Assumptions and Definition of the Renormalized Solution
Assumption
P
. We assume that the functions
a(x, s) = (a i(x, s), • • • , an(x, s)) : R2n H Rn, b(x, sg, s) : R2n+1 H R, from the equation (1), are Carath´eodory functions. Let there exist a nonnegative function Ф G Lp‘(),ioc(Rn) and positive numbers a, a such that for a. e. x G Rn and all s, t G Rn the following inequalities hold: |a(x,s)| C a (|s|p(x)-i +Ф(x));(6) (a(x, s) — a(x, t)) • (s — t) > 0, s = t;(7) a(x, s) • s > a|s|p(x).
Here, s
•
t =
£n
=1
S
i
t
i
,
s = (
si,..
.,S
n
),
t = (
ti, • •
• ,t
n
)•
Moreover, let there exist a nonnegative function Ф
д
G
L
y
,
ioc
(
R
n
), a continuous nondecreasing function
b
:
R
+
H
R
+
,
and a positive number
b
such that for a. e. x
G
R
n
and all
s
g
G
R,
s
G
R
n
the following inequalities hold:
|
b
(x
,S
0
,
s)
| C a
(
|
s
o
|
) (ф
o
(x) +
|
s
|
p
(x))
; (9)
b
(x
,s
o
,
s)
s
o
>
b
|
s
o
|
P
o
(x)+1
, p
()
—
1
< poGG
Here, we assume that
p,p
o
G
C
+
(
R
n
) and
p
+
< n
.
Following [6, 7], we introduce the notation qoG) = pp^, qeG) = ^, qi() = qOq0—p(), q*» = ₽‘(•)• О = . p‘(), where p+ = pp-y• Let the following additional assumption be satisfied
p
()
—
1
< q
o
(
•
)
•
(11)
Then we can define
q
2
(
•
) =
q
o
q
j+y-^
•
Let us define the truncation
T
k
(
r
) = max(
—
k,
min(
k,r
))
.
By Lip
o
(
R
) we denote the space of all Lipschitz functions on
R
whose derivative has compact support.
Definition 1. Let the domain Q be bounded. A measurable and a. e. bounded function
u
: Q
H
R
is called a renormalized solution of the problem (1), (2) with
f
G
L
y
(Q) if the following conditions are satisfied:
a)
T
k
(
u
)
G
W
p0
(Q) for any
k >
0;
b)
b
(x
, u,
V
u
)
G
L
i
(Q);
c)
|V
uK
)
-
1
e
L
q0(Q), 1
C
qQ
d) Hp^)
-
1
e
L
q0(Q), 1
C
qQ
for any
h
e
Lip
g
(
R
) and
p
e
W
r^^
Q),
r() > q
2
(
•
), such that
ph
(
u
)
e
W
p
(
_
)
(Q),
ph
(
u
) =0 in
R
n
\
Q, the following equality holds:
У (
b
(x
,
u,
V
u)
—
f
)
h
(
u
)
p
dx
+ У a(x
,
V
u
)
•
(
V
uh
'
(
u
)
p
+
V
ph
(
u
))
dx = 0.
(12)
R
n
R
n
Denote by
L
M
j
ioc
(
R
n
)
, L
i
,
ioc
(
R
n
)
, W
p-^
ioc
(
R
n
) the spaces of functions
v
defined in
R
n
such that
v
e
L
^
(
Q
)
,
L
i
(Q)
W
p\
)
(
Q
) for any bounded
Q
C
R
n
, respectively. For brevity of notation, we write
(
L
p^
(
Q
))
n
=
L
p0
(
Q
), (
L
p0,
ioc
(
R
n
))
n
= L
p(^,
loc
(
R
n
)
-
Definition 1-loc. A measurable and a. e. bounded function
u
:
R
n
^
R
is called a local renormalized solution of the equation (1) with
f
e
L
i
,
ioc
(
R
n
) if the following conditions are satisfied:
a
—
loc)
T
k
(u)
e
Wp^
lo^
Rn
) for any
k>
0;
b
—
loc)
b
(x
,
u,
V
u)
e
L
1
,
loc
(
R
n
);
c
—
loc)
V
u
p
-
e
L
qBioc
(
R
n
)
,
1
C
qG
)
< q
2O
;
d
—
loc)
/V
1
e L
q
(
•
)
,
loc
(
R
n
)
,
1
C
q
(
^
)
< qaO
;
for any
h
e
Lip
g
(
R
) and
p
e
Wp^ (
R
n
), rQ
> q
2
(
•
), with compact support the equality (12) holds.
Note that in [7] the definition of a renormalized solution of the Dirichlet problem for an equation with the pQ-growth in a bounded domain was formulated for the first time, and its existence was proven.
Let
u
be a local renormalized solution of the equation (1). For any
k >
0, we have
VTk(u) = X{Rn: |u| Using (4), we deduce from (6) that |a(x,s)|p‘(x) C A|s|p(x) + Ф(x)(6') with a nonnegative Ф e Li,ioc(Rn). It follows from (13), (6') that for any k > 0, X{Rn: |u| Evidently, q20 < p'G), and hence Ф e Lq0,ioc(Rn), q0 < q2(•)■ Therefore, in view of c — loc), (6), we get a(x, Vu) e LqWoc(Rn), 1 C qG) < q20. Remark 1. Each integral in (12) is well defined. Let supp p = K. It is easy to prove that q2(•) > n, and hence the embeddings W^(K) C Wq-^(K) C W1(K) C C(K) hold. The first term in (12) is finite due to the condition b-loc), f e Li,ioc(Rn), and h(u)p e L^(K). Since supp h'C[—M, M] for some M > 0, the second term can be written as У a(x, Vu) • (Vuh'(u)p + Vph(u)) dx K = У a(x, VTm(u)) • VTm(u)h'(u)pdx + J a(x, Vu) • Vph(u) dx. K K Thanks to (13), (14), and h'(u)^ G L^(K), the first integral is defined and finite. Since a(x, Vu) G Lq^(K) for any q(-) < q2(^ (see (15)) and h(u)Vp G Lr^(K) for any r0 > q2(•), the term a(x, Vu) • V^h(u) is integrable on K. The main result of the present work is the following Theorem 1. Let f G Li,ioc(Rn) and Assumption P be satisfied. Then there exists a local renormalized solution u of the equation (1). If f ^ 0 for a.e. x G Rn, then u ^ 0 for a. e. x G Rn. In [8], a nonlinear anisotropic elliptic equation of the form (1) (b(x, so, s) = b(x, so)) with variable exponent nonlinearities and a locally integrable function f is considered in Rn. F. Mokhtari proved the existence of a local weak solution in Rn.
3. Preliminaries The Lebesgue measure of a measurable set Q will be denoted by meas(Q). All constants appearing below are positive. We denote B(R) = {x G Rn : |x| < r}. Let Пл(^) = min(1, max(0, R + 1 — q)), q G R+. Assertion 1. Let u be a local renormalized solution of the equation (1). Then for any R > 0 the following estimates hold: J (|u| + 1)po(x)dx < Di,(16) B(R) У (|u| + 1)a-1|Vu|p(x)dx < D2(a), a< 0, B(R) meas ({B(R) : |u| > h}) < D\hp0, h ^ 1. Moreover, | u|p(•) 1G Lq0,loc(Rn), 1 < q(^) < qs(), and J |u|(p(x)-1)q(x)dx < D3;(19) B(R) V G Lq(^),ioc(Rn), 1 < q0 < q2(0, and У |Vu|(p(x)-1)q(x)dx < D4, B(R) and also |Vu|p(•)-1G Lq(^),ioc(Rn), 1 < q0 < q4(^), and (20) holds. Here, the constants Di — D4 depend on N, where N(R +1) is the collection a, a, b, n, R, P, P0, IHlp’O^R+l), IlfII1,B(R+1), which does not dePend on u. < Let p > 0, а < 0 and h(Q) = (1 — (|q| + 1)a) sign q, hp(q) = h(Tp(Q)), q G R. Then hp(Q) = |a|(|Tp(q)| + 1)a—1X{|^|<P}. Let h = hp in (12). Using (6), for a nonnegative ^ € Wr^)(Rn), r(-) > q'2(•) with compact support we get |a| j (\Tp(u)\ +1)a-1a(x, Vu) •VTp(u)^dx + J b(x,u, Vu)^hp(u) dx Rn Rn = -Ja(x, Vu) • V^hp(u) dx + У ^fhp(u) dx< а У \VTp(u)\p(x)1|V^| dx (21) Rn Rn Rn + а У |Vu|p(x)-1|V^| dx + а У Ф|V^| dx + J ^\f| dx. {Rn: |u|>p} Rn Rn Then, using (5), we obtain I = a J*\VTp(u)\p(x)-1|V^ dx< H^ У |VTp(u)|p(x)(|Tp(u)| + 1)a-Mx Rn Rn + Ci(a, a,a) У |VHp(x)(|Tp(u)| + 1)(1-a)(p(x)-1)^-p(x)dx. Rn Let -a* = infRn pyy-1 - 1 > 0. For a € (a*, 0) and Ta(x) = (p(x)p01(x(1-a) > 1, applying (5) again, we deduce I< ya у |VTp(u)|p(x)(\Tp(u)\ + 1)a-1vdx Rn + e J'(\Tp(u)\ + 1)p0(xMx + C2(e,a,a,a) j |VHp(xK(x)^1-p(x)T‘(x)dx. Rn Rn Combining (21), (22) and using (8), (10), we get the inequality a у /(|TP(u)| +1)a-1|VTp(u)|p(x)^dx + У |b(x,u, Vu)|^|hp (u)| dx Rn Rn ^ e У (|u| + 1)p0(x)^dx + C2 У |V^|p(x)T‘(xV-p(x)T‘(x)dx Rn Rn + а У |Vu|p(x)-1|V^| dx + a J Ф\V^\ dx + J ^\f| dx. {Rn: |u|>p} Rn Rn In view of the condition c-loc), \Vu\p(•)-1 € Li,ioc(Rn), and hence lim ρ→∞ j Vupx 'V.?: dx = 0. {Rn: |u|>p} Passing to the limit as ρ → ∞ in (23) and noting (24), we establish a^ /(|U| + 1)a-1\Vu\p(x)^dx + У |b(x,u, Vu)|^|h(u)| dx Rn < e У (|u| + 1)po(x)^dx + C2У У^) Rn Rn Rn p(x)Ta (x) г г ^dx + а I Ф\V^\dx + / ^|f | dx. Rn Rn Applying (10), we derive а у j(\u\ + 1)а-1 Vup"x^dx ■ b у |u|p0(xMh(u)| dx Rn Rn У f p(x)Ta(x) ГГ < e (|u| + 1)po(x)^dx + C2 ^dx + a Ф|V^| dx + pf | Rn Rn Rn Rn For a G (a*, 0], consider the function 0a (x) = p(x)T‘ (x) = —, po(x)p(x) :Rn^ r+. \ , , a\ / / a\ / po(x)+1-p(x)+a(p(x)-1) Denote 0a = maxxeRn 0a(x). Evidently, 0a is continuous, increasing for a G (a*, 0], and bounded form below by 0q. For any a G (a*, 0), find 0a and fix some 0 > 0a. Let ^ = nR(|x|). Then it follows from (25) that a у j(\u\ +1)a-1 |Vu|p(x) nR dx + b У |u|po(x) nR |h(u)| dx < e j (\u\ + 1)po (x)nR dx Rn Rn Rn + C2 У (nR + 0е|VnR|в) dx + a0 У Ф|VnR|nR 1dx + У nR|f | dx. Rn Rn Rn Next, applying the inequality (5) and using the obvious inequality 0‘ < p‘(x), we establish 0 У Ф|VnR|nR 1dx Rn < I (0e|VnR|e+ Фе‘nR) dx< J (0е|VnR|e+ Фp‘(x)nе + nR) dx. (27) Rn Rn Combining (26), (27), we get У (|u| + 1)a-1|Vu|p(x) Rn < eC3 У (|u| + 1)po(x) Rn nR dx + У |u|po(x)ne|h(u)l dx Rn nR dx + C4 У (|VnR|e+ nR(1 + \f | + Фp‘(x))) dx. For |u| > 1, we have |h(u)| = 1 — (|u| + 1)a> 1 — 2a> 0. Then, taking into account (4), we have the following chain of inequalities: У (|u| + 1)po(x)nR dx< 2po+-1У(|u|po(x)+ 1)nR dx< 2po+ У |u|po(x)nR dx Rn Rn {Rn: |u|>1} nR dx < y-yy У |u|Po(x)nR|h(u)| dx + 2po+ У nR dx. Rn Rn + 2po+ У {Rn: |u|<1} - Combining (28), (29) and choosing a sufficiently small e > 0, we obtain У (|u| + 1)a-1|Vu|p(x)nR dx + У (|u| + 1)po(x)nR dx Rn Rn < C5 У (|VnR|e+ nR(1 + |f | + Фp‘(x))) dx. This yields (16) and (17) for a E (a*, 0). For a C a*, the inequality (17) also holds. The estimate (16) implies (18). Let a E (1 — p-, 0) and v = (1 + |u|)e, в = (a + p- — 1)/p- > 0. In view of ep(x) < p(x) — 1 < po(x), we use (16) to get / B(R) vp(x)dx C j (1 + |u|)po(x)dx C D1 B(R) Then Vv = в(1 + |u|)e 1 Vusignu and, according to (17), the following inequalities are satisfied: У |Vv|p(x)dx C ep- B(R) B(R) j (1 + |u|)(e-1)p(x)|Vu|p(x)dx c/ B(R) (1 + |u|)a-1|Vu|p(x)dx C D2. Combining (30), (31), we derive ||v||p0,B(R) C Ce- Hence, in view of Lemma 1, we obtain Р*() HvHs(^)(p(^)-1),B(R) CC7, 1 C sG < p0 - 1 - Therefore, we have for any a E (1 — p-, 0) that У |u|es(x)(p(x)-1)dx B(R) C У (|u| B(R) + 1)es(x)(p(x)-1)dx C D3- The estimate (19) follows from (32) under the assumption 1 C q(x) < p Px^x)1-!)-), which is satisfied for any sufficiently small α. Next, applying the inequality (5), for 1 C q(x) < p‘(x) and a < 0 we have: У |Vu|(p(x)-1)q(x) B(R) dx C / B(R) |Vu|p(x)(|u| + 1)a-1 Г (1-a)q(x) dx + (|u| + 1)p‘(x)-q(x). B(R) The first integral in (33) is estimated by (17), and the second one by (19), provided that P1^^)< qo(x), which holds for 1 C q(x) < p—Oqo(x)’ and sufficiently small a < 0. Moreover, the second integral can be estimated using (16) under the assumption p^D < po(x), which holds for 1 C q(x) < pf-xp0^ and sufficiently small a < 0. Thus, the estimate (20) is established. > Notice that in the case of a bounded domain Q, global estimates of the form (19), (20) for the entropy solution are established in [6, Proposition 3.2, 3.6, Corollary 3.5, 3.7]. Assertion 2. Let u be a local renormalized solution of the equation (1). Then for all k,R > 0, h ^ 0 the following estimate holds: {B(R): |u|>k+h} |b(x, u, Vu)| dx + 1 / {B(R): h<|u| |Vu|p(x)dx C D5, where the constant D^(N(R + 2)) independent of u. < Consider the function Tk,h(e) = Q - - hsign Q ' k sign q for |-| < h, for h < |-| < k + h, for |-| > k + h. Taking h(u) = Tkh(u), ^(x) = nR^x^ in (12), we get У nRa(x, Vu) •VudxR J b(x,u, Vu)Tkh(u)nR dx {Rn: h<|u| {Rn: h<|u|} + У a(x, Vu) •VnRTkh(u) dx= J Tkh(u)nRf dx. {Rn: h^\u\} Then, using (6), (10), we derive {Rn: h<|u|} У a(x, Vu) -Vudx + k J |b(x,u, Vu)| dx {B(R): h^\u\ < k У |f | dx + ka {B(R+1): \u\^h} ^ ^ kllfll1,B(R+1) + ka {B(R): \u\^k+h} ■ У (|Vu|p(x)_1+ Ф(x)) dx {B(R+1): \ul^h} У (|Vu|p(x)_1+ Ф(x)) dx. B(R+1) Combining the last inequality with (20) and applying (8), we obtain the estimate (34). In particular, from (34) with h = 0 we have the estimate у |b(x, u, Vu)| dx + k У |Vu|p(x) dx < D5. > {B(R): \u\^k} {B(R): |u| Assertion 3. Let u be a local renormalized solution of the equation (1). Then for any h ^ 1, R > 0 the following inequality holds: meas ({B(R) : |Vu| > h})< D6(N(R + 2))h γ0 , p0_p_ Yo =----FT P0_ + 1 . < We deduce from (36) that |Vu|p(x)dx< D5k, k > 0. {B(R): \u\ Let Ф(k,h) = meas {B(R) : |u| ^ k, |Vu|p(x)^ h}, k,h> 0. It has been proved above (see (18)) that Ф(k, 0) < D1k_p0-. (39) Since h ^ Ф(k,h) is nonincreasing, for k,h > 0 we have h Ф(0,h)< h1 У Ф(0,-) dQ< 0 Ф(k, 0) + h h У(Ф(0,Q) - Ф(k,^)) dQ. Note that Ф(0, q) - Ф(к, q) = meas |b(R) : |u| < k, |Vu|p(x)> q}. Consequently, it follows from (38) that ∞ Ф(0, q) — Ф(k, q)^ dQ C D^k- (41) Combining (39)–(41), we deduce Ф(0,h) C Dik-p0- + D5k/h-1 - p0 Choosing k = hp0-+1, we derive Ф(0, h) < D^h p0-+1. Hence, in view of the inclusion {B(R) : |Vu|p(x) ^ h} D {B(R) : |Vu| ^ h1/p- }, we obtain the estimate meas ({B(R) : |Vu| > h1/p-}} C D^h-^/P-, h > 1, which implies (37). О Lemma 2. Let either V = Lp(.)(Q) or V = Wp(,)(Q), and vj, j G N, v be functions from V , such that {vj}j∈N is bounded in V and vj → v a. e. in Q, j → ∞. (42) Then vj ⇀ v weakly in V, j → ∞. Lemma 3. Let vj, j G N, v G L^Q) be such that {vj}jeN is bounded in L^Q) and the convergence (42) takes place. Then vj ^ v weakly in L^Q) j ^ ж. If, in addition, h G Lp(^)(Q), then vjh ^ vh strongly in Lp^Q), j ^ ж. Below, we will use the Vitali theorem in the following form (see [9, Chapter 3, § 6, Theorem 15]). Lemma 4. Let vj, j G N, v be measurable function in a domain Q, meas (Q) < ж, such that the convergence (42) takes place, s = 1 or s = p(), and the integrals j |vj(x)|s dx, j G N, Q uniformly absolutely equicontinuous. Then vj ^ v strongly in Ls(Q), j ^ ж. Lemma 5 [10, Lemma 4.8]. Let the assumptions (6)-(8) hold in Q, vj G Wp()(Q), j∈N, Vvj ^ Vv in Lp(^)(Q), j ^ ж, lim j→∞ У qj (x) Q dx = 0, qj(x) = (a(x, Vvj) — a(x, Vv)} • V(vj — v). Then, along a subsequence, Vvj ^ Vv strongly in Lp()(Q), j ^ ro, a(x, Vvj) ^ a(x, Vv) strongly in Lp‘()(Q), j ^ ro. Definition 2. Let Q be bounded. A measurable and a. e. bounded function u : Q ^ R is called a renormalized solution of the problem (1), (2) with f G Li(Q) if the assumptions a)-d) are satisfied and for any w G Wp()(Q) A L^(Q), w = 0 in Rn \ Q, such that there exist k > 0, w+^,w “ G W^j(Rn), r() > q‘(•), ( w = w+“ a. e. for u> k, [ w = w "^ a. e. for u < —k, the following equality holds: У (b(x,u, Vu) — f }wdx + У a(x, Vu) ^Vwdx = 0. Rn Rn Definition 2-loc. A measurable and a. e. bounded function u : Rn ^ R is called a local renormalized solution of the equation (1) with f G Li,ioc(Rn) if the assumptions a-loc)-d-loc) are satisfied and for any w G Wp()(Rn) A LM(Rn) with compact support such that the assumptions (44) are satisfied, the equality (45) holds. Remark 2. Each integral in (45) is well defined. Let suppw = K. The first term on the left-hand side is finite due to the assumption b — loc), f G Li,ioc(Rn), and w G L^(K). The second term can be written as У a(x, Vu) ^Vwdx+ У a(x, Vu) ^Vwdx + J a(x, Vu) •Vwdx. {K: u<-k} {K: u>k} {K: |u|^k} Thanks to (15) and (44), the product a(x, Vu) • Vw is integrable on {K : u < —k} and {K : u > k}. Finally, in view of (14) and w G W^^K), the product a(x, Vu) • Vw is integrable on {K : |u| C k}. Theorem 2. Definitions 1-loc and 2-loc are equivalent. The equivalence of Definitions 1 and 2 in the case of data in the form of a general measure is proven in [7], the equivalence of Definitions 1-loc and 2-loc is established similarly. 4. Proof of Theorem 1. Beginning For any m∈N there exists a renormalized solution to the problem —diva(x, Vum) + b(x,um, Vum) = f, x G B(m); um = 0, x G dB(m), where f G Li(B(m)) (see, e. g., [11]). Let us extend umby zero to Rn. Obviously, umis a local renormalized solution of the equation (1). In this section, we will obtain some a priori estimates and convergence properties of the sequence {um}. Let R > 0 be fixed and p G WrY^Rn), r() > q'2(•), be with compact support supp^ C B(R). By Definition of 1-loc, for any h G Lipo(R), the solution um satisfies the equality <(b(x,um, Vum) - f)h(um)^ + a(x, Vum) (Vumh‘(um)^ + V^h(um))> = 0, R ^ m. (47) Moreover, for any w G Wp(^(Rn) A L^(Rn) with compact support supp w C B(R) and such that (44) holds, the following equality is satisfied in view of Definition 2-loc: I (b(x,um, Vum) - f }wdx + Rn I a(x, Vum) • Vwdx = 0, Rn R< m. Step 1: a priori estimates. Using the estimates (16)-(20) from Assertion 1, for any a < 0 and m ^ R + 1 we deduce I (|um| + 1)p0(x)dx < Di, (49) b(R) J (|um| + 1)a-1|Vum|p(x)dx < D2, b(R) meas ({B(R) : |um| > h})< D^h-p0-, h > 1, I |um|(P(x)-1)q(x)dx ^ D3, i ^ q0 B(R) I |Vum|(p(x)-1)q(x)dx < D4, 1 ^ q() < q2() (or q4(-)). B(R) Using the estimate (36) from Assertion 2, for any k > 0 and m ^ R + 2 we get {B(R): \um\>k} |b(x,um, Vum)|dx + 1 k I |Vum|p(x)dx ^ D5. {B(R): |um| Hence, using (6‘), for m ^ R + 2 we obtain Pp^B(R) (\VTk(um)|) < D5k, k> 0, pp‘BB(R) (|a(x, VTk(um))\) < D7k, k > 1. From the inequality (54), due to the arbitrariness of k > 0, we establish the estimate ^b(x,um, Vum)^i,B(R) < D5. Then, according to Assertion 3, for any h ^ 1 and m ^ R + 2 the following inequality holds (see (37)): meas ({B(R) : |Vum| > h}) < D6h-Y0, yo = pp0—+ 1. Hereinafter, the constants Di , Ci independent of m, k. Step 2: a. e. convergence of subsequences of {um}, {∇um}. It follows from (51), (58) that meas ({B(R) : |um| ^ h}) ^ 0 uniformly with respect to m, h ^ от, (59) meas ({B(R) : |Vum| ^ h}) ^ 0 uniformly with respect to m, h ^ от. Let us establish the following convergence along a subsequence: um→ u a. e. in Rn, m → ∞. (60) Let a E (1 — p-, 0). Consider a sequence vm = (1 + |um|)e, в = (a + p- — 1)/p- > 0. According to (49), (50), we have the estimates (see (30), (31)) J |vm|p(x)dx ^ D1, b(R) У |Vvm|p(x)dx < D2. b(R) Let us also consider the sequences vm = (1 + (um) + )e, vm = (1 + (um)-)e. It is clear that Vm| < (1 + |um|)(a-i)/p- |Vum|, Vm| < (1 + |um|)(a-i)/p- |Vum|. The estimates (61) imply the boundedness of vm, vm in Wp^^Bffi)) and, in view of the compactness of the embedding into Lp(^)(B(R)), we have the strong convergences vm ^ v, vm ^ v in Lp(^)(B(R)) and the a. e. convergence in B(R). Thus, the convergence (60) is proved in B(R). Next, taking R from N, we select a diagonal subsequence um(we denote it by the same indices) converging a. e. to u in Rn. It follows from (60) that for any k > 0, Tk(um) ^ Tk(u) a. e. in Rn, m ^ от. The boundedness of {Tk(um)} in W^)(B(R)) for a fixed k > 0 follows from the estimate (55). Then one can select a weakly convergent subsequence Tk(um) ^ vk, m ^ от in Wp()(B(R)), where vk E Wp1()(B(R)). The convergence (60) implies that vk = Tk(u) E W^ )(B(R)). Thus, in view of the arbitrariness of R, we obtain the convergence Tk(um) ■ Tk(u) in W R , m ^ от. Next, the convergence of the subsequence ∇um (we denote it by the same indices) ∇um → ∇u a. e. in Rn,m can be proved in much the same way as in [12, Step 4]. Step 3: strong convergences |um|p(x)- 1 u in LqO,loc(Rn), 1 < q(9 |Vum|p(x)- 1 ,\u 1 in LqWoc(Rn), 1 < qG) a(x, Vum) ^ a(x, Vu) in Lq0,loc(Rn), 1 < q() < q2() (or q4()), m ^ от. Applying Fatou’s lemma and the convergences (60), (63), from the estimates (52), (53) we derive |u|p()-1 ELq^io^Rn), 1^ q()< q3(0, |Vu|p()-1 ELq0,ioc(Rn), 1< q()< q2() (orq4()). Applying the inequalities (4), (6) and Young’s inequality, for any measurable set Q C B(R) and any e > 0 we establish j |a(x,Vum)|q(x) dx * aq+ 2q+-1 j (|Vum|(p(x)-1)q(x> + Фq(x)(x)) dx QQ * e / |Vum|(p(x)-1)q(x)dx + C8(e) meas (Q) + C9 Фq(x)(x) dx, B(R) Q where 1 < q0 < q(-) < q20. Taking into account the absolute continuity of the second integral on the right-hand side of (67), applying the estimate (53), for any e > 0 we find 5(e) such that for any Q with meas (Q) < 5(e) the following inequality holds: J |a(x, Vum)|q(x)dx * e (Vm > R + 1). Q This implies that the sequence {|Vum|(p(x)-1)q(x)}, {|a(x,Vum)|q(x)} have uniformly absolutely equicontinuous integrals over B(R). By Lemma 4, we have the convergences (65), (66). The convergence (64) is established similarly, by using (52). The estimate (35) for um and k = 1, h ^ 1 is written as {B(R): h-1*|um| * {B(R+1): lum[^h-1} a(x, Vum) • Vumdx + If|dx + a / {B(R+1): |um|>h-1} / {B(R): luml^h} |b(x,um, Vum)| dx (|Vum|p(x)-1+ Ф(x)) dx, m > R + 2. Since |Vum|p(x)-1converges strongly in L1(B(R + 1)) and in view of the absolute continuity of the integrals on the right-hand side of the last inequality, taking into account (59), for any e > 0 one can choose a sufficiently large h(e) > 1 such that for h ^ h the following estimate holds: / a(x, Vum) •Vum dx+ {B(R): h-1*|um| / \b(x,um, Vum I dx < {B(R): luml^h} ε 2, m ^ R + 3. (68) The proof of the theorem will be continued in Section 6.
5. Step 4. Strong Convergence of Truncations in W^/B (R)) In this step, the following strong convergence will be established: VTk (um) ^VTk (u) in LpBloc(Rn), m ^to,(69) a(x, VTk(um)) ^ a(x, VTk(u)) strongly in Lp‘0,ioc(Rn), m ^ to.(70) It follows from (56) that for any k ^ 1 we have ||a(x, VTk(um))||p‘0,B(R) * Du(k), m > R + 2- For positive real numbers m, h, we denote by w(h,m) any value such that limsuplimsup |w(h, m)| = 0. h^+м m^+^ Moreover, by Wk(m) we denote any value such that, for a fixed k, limsupm л. ^ |wk(m)| = 0. Let h, k, h — 1 > k > 0, фк(q) = qexp(Y2g2), Q G R, where y = b(k)• It is evident that W(Q) = ^k(Q) - Y|фк(Q)| Y7/8, Q G R. Hence, for zm = Tk(um) — Tk(u) we have 7/8 < ^k(zm) < max ^k(p) = Сц(к), m G N. [-2k,2k] In view of (60), we get Фk(zm) ^ 0, ^k(zm) ^ 1 a. e. in Rn, m ^ от, |фk(zm)| C фk(2k), 1 < ^k(zm) C ^k(2k), m G N. Applying (73), (74), by Lemma 3 we establish the convergence |фk(zm)| ““ 0 in LM(Rn), m ^ от. According to Lemma 3, for g G Lp0,loc(Rn) we have gфk(zm) ^ 0 in Lp0,^(Rn), m ^ от. Taking w = фk(zm)nR(|x|)nh-i(|um|), R > 0, as a test function in (48), we obtain J a(x, VTh(um))V(nR(|x|)фk(zm)nh-i(|um|)) dx Rn + I b(x,um, Vum)фk(zm )nR(|x|)nh-i(|um|) dx + I fфk(zm)nR(|x|)nh-i(|um|) dx = Iimh+ imh + imh = 0, m Y R + 1. Rn Estimates for the integrals imh — imh. Thanks to (73), by Lebesgue’s theorem we obtain limhl C I |fфk(zm)| dx = ^(m). (78) B(R+1) Evidently, zmum Y 0 for |um| Y k. Therefore, in view of (10), we have b(x, um, ^um)фk(zm) Y 0 for |um| Y k. Taking this into account and applying (8), (9), we estimate -Imh< I \b(x,um, Уит)\1Фк(zm)\nR(\x\) dx {Rn: |um| < b(k) I (\VTk(um)\p(x)+ Фо(x)) |фк(zm)lnR(lxl) dx< b(k) I Фо(х)|фк(zm)\ dx (79) Rn B(R+1) -- Rn In view of (75), we have I2’i = -(k) / B(R+1) Фо(x)|фk(zm)| dx = ш(т). Now, using (78), (79), (80), from (77) we derive the inequalities im = im - im = J a(x, VTh(um) •Vz^(zm)nR(\x\)nh-i(\um\) dx Rn - b^ [ a(x, VTk (um)) •VTk(um)\фk (zm)\nR(\x\) dx a Rn < w(m) + / a(x, VTh(um)) • VumnR(\x\)\фk(zm)\ dx {Rn: h-i<|um| + J \a(x, VTh(um))\\VnR(\x\)\\фk(zm)\dx = Цт) + I12h + №, m > R + 1. {Rn: |um| Estimate of the right-hand side in (81). Using (74), we have mh i2 {Rn: h-i<|um| a(x, VTh(um)) • VumnR(\x\)\фk(zm) dx < \ фк (2k) \ J a(x, Vum) •Vum dx. {B(R+i): h-i^\uml Thanks to (68), we get Imh< ^(h), m > R + 4. Next, using (71) and (76) with g = 1, we obtain imh = I \ a(x, VTh(um)) \ \ VnR( \ x \ ) \ \ фк(zm)\ dx {Rn: |um| < Dii(h)Mkr = Uh(m). (83) Combining (81)–(83), we establish the inequalities Performing elementary transformations, we derive the equalities imh = j a(x, VTh(um)) •VT^um^k (zm)nR(|x|)nh-i(|um|)) dx Rn - I a(x, VTh (um)) VT (u^k (zm )nR(lxl)nh-i(luml)) dx Rn - bB [ a(x, VTk (um)) •VTk (um^k (zm )lnR (|x|) dx a Rn = I a(x, VTk (um)) •VTk (um)ффт)nR (|x|) Rn - I a(x, VTh(um)) •VTk (u^k (zm)nR (|x|)nh-i (|um|)) dx Rn J a(x, VTk(um)) • Vzm^(zm)nR(\x\) + Rn / Rn a(x, VTk(um) • VTk(фффт)nR(\x\) - J a(x, VTh (um)) •VTk (u)Фk (zm)nR (|x|)nh-i(|um|) dx. Rn Obviously, we have Im = J a(x, VTk(um)) Rn Vzm^(zm)nR(\x\) dx - b^ t a(x, VTk (um)) •VTk (ифф (zm )|nR(|x|) dx a Rn + у (a(x, °) {Rn: \um\^k} - nh-1 a(x, VTh(um))) • VTk(u)Фk(zm)nR dx = Am + Am + Im. Using (71), we get \Im< ^ J |a(x, V^ (um))\\VTk (u)фk (zm)\dx< Dii(k)^VTk (u^k (zm)^p^,B(R+i). B(R+1) In view of (76) with g = |VTk(u)| G Lp(.)(B(R + 1)), we obtain Im = w(m). (86) Using (74), (71), we establish that \Im| < Di2(h,k)||VTk(u)X{luml^k}^p^B(R+i). (87) By (60), we get VTk(u)X{lum\^k}— VTk(u)X{\ul^k} =0 a.e. in Rn, m - ^ : |VTk(u)|p(x)X{|um|^k}< |VTk(u)|p(x)G Li(B(R + 1)), m > R + 1. Using Lebesgue’s lemma, we deduce that VTk(u)X{\um\^k} — 0 in Lp^B(R + 1)), m — Therefore, by (87), we obtain Im = ^(m). (88) Since im does not depend on h, it follows from (84), (85), (86), (88) that Im C ^k(m) + w(h). From here, using the notation (43), we have 0 C У qm(x)^k(zm)nR(\x\) dx Rn = Im1 - J a(x, VTk(u)) • V(Tk(um) - Tk(u)^k(zm)nR(\x\) dx Rn C Uh(m) + ^(h) - I a(x, VTk(u))V(Tk(um) - Tk(u))^k(zm)nR(^x\) dx Rn = Mh(m) + w(h) - Im. Thanks to (73), by Lemma 3 we establish the convergence nR(\x\)^k (zm)a(x, VTk (u)) ^ nR(\x\)a(x, VTk (u)) in Lp‘(^(Rn), m ^ to. From here, applying (62), we deduce m I44 J ^k(zm)a(x, VTk(u))V(Tk(um) - Tk(u))nR(\x\) dx = ^(m). Rn Combining (89), (90), we arrive at f ^k(zm')qm(x) dx C uh(m) + u(h). Using (72), B(R) passing to the limit in the last inequality first by m → ∞ and then by h → ∞, we establish that lim m→∞ qm(x) dx = 0. B(R) By Lemma 5 (vm= Tk(um)), due to the arbitrariness of R > 0, we have the convergences (69) and (70).
6. Proof of Theorem 1. Ending Step 5: limit function is a renormalized solution. As in [11, Step 6], we established the convergence b(x,um, Vum) ^ b(x,u, Vu) in Li,ioc(Rn), m ^ to. (91) Let us prove that the limit function u satisfies Definition 2-loc. The assumptions a-loc)–d-loc) of Definition-loc are satisfied, which is proved in Steps 2, 3. Let us prove the equality (12). Let h G Lip0(R) and ^ G Wr^^Rn), r0 > q’,(•) be with compact support. Since h is bounded and continuous, due to the convergence (60), by Lemma 3 we establish h(um') ^ h(u) a. e. in Rn, m ^ to,(92) h(um) —^ h(u) weakly in L^(Rn), m ^ to,(93) V^h(um) ^ V^h(u) strongly in Lr(.)(Rn), r() > q'2(•), m ^ to.(94) If supp h' C [-M, M] for M > 0, then for a. e. x G Rn we have \h(um)\p(x)+ \Vh(um)\p(x)= \h(um)\p(x)+ \Vumh'(um)\p(x) C C12 + C13\VTm(um)\p(x). Then, applying the estimate (55), we obtain the boundedness of the sequence {h(um)} in W1^)(B(R)). From here and (92), by Lemma 2 we establish the convergence h(um) ^ h(u) weakly in W^) ioc(Rn), m ^ ^' Then we conclude the convergence Vh(um)p ^ Vh(u)p weakly in Lp(.)(Rn), m ^ от. Applying (91), (93), we get У(b(x,um, Vum) Rn - f )h(um)^dx = I Rn (b(x, u, Vu) — f )h(u)p dx + w(m). Taking into account the convergences (70), (95), we have Уa(x,VTm(um) •Vh(um)^dx Rn У a(x, VTm(u)) • Vh(u)^ Rn dx + ш (m) = У Rn a(x, Vu) • Vuh’(u)^ dx + ш(т). Using the convergences (66), (94), we obtain У a(x, Vum) • Vph(um) dx = Rn J a(x, Vu) • V^h(u) dx + ш(т). Rn Combining (47), (96)–(97), we get (12). If f ^ 0 a. e. in Rn, then for each m G N the solution um of the problem (46) satisfies um ^ 0 a. e. in Rn. Applying the convergence (60), we establish that u ^ 0 a. e. in Rn. Theorem 1 is proved.
20;
aG);
30.