Existence results for a Dirichlet boundary value problem involving the p(x)-Laplacian operator

Автор: Ait Hammou Mustapha

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.24, 2022 года.

Бесплатный доступ

The aim of this paper is to establish the existence of weak solutions, in W1,p(x)0(Ω), for a Dirichlet boundary value problem involving the p(x)-Laplacian operator. Our technical approach is based on the Berkovits topological degree theory for a class of demicontinuous operators of generalized (S+) type. We also use as a necessary tool the properties of variable Lebesgue and Sobolev spaces, and specially properties of p(x)-Laplacian operator. In order to use this theory, we will transform our problem into an abstract Hammerstein equation of the form v+S∘Tv=0 in the reflexive Banach space W-1,p′(x)(Ω) which is the dual space of W1,p(x)0(Ω). Note also that the problem can be seen as a nonlinear eigenvalue problem of the formAu=λu, where Au:=-Div(|∇u|p(x)-2∇u)-f(x,u). When this problem admits a non-zero weak solution u, λ is an eigenvalue of it and u is an associated eigenfunction.

Еще

Dirichlet problem, topological degree, p(x)-Laplacian operator

Короткий адрес: https://sciup.org/143178748

IDR: 143178748   |   DOI: 10.46698/s8393-0239-0126-b

Список литературы Existence results for a Dirichlet boundary value problem involving the p(x)-Laplacian operator

  • Brouwer, L. E. J. Uber Abbildung von Mannigfaltigkeiten, Mathematische Annalen, 1912, vol. 71, no. 1, pp. 97–115. DOI: 10.1007/BF01456931.
  • Leray, J. and Schauder, J. Topologie et ´Equationes Fonctionnelles, Annales Scientifiques de l’´Ecole Normale Sup´erieure, 1934, vol. 51, pp. 45–78. DOI: 10.24033/asens.836.
  • Berkovits, J. On the Degree Theory for Nonlinear Mappings of Monotone Type, Annales Academia Scientiarum Fennica. Series A I. Mathematica Dissertationes, 1986, vol. 58, 58 p.
  • Berkovits, J. Extension of the Leray-Schauder Degree for abstract Hammerstein Type Mappings, Journal of Differential Equations, 2007, vol. 234, no. 1, pp. 289–310. DOI: 10.1016/j.jde.2006.11.012.
  • Berkovits, J. and Mustonen, V. On Topological Degree for Mappings of Monotone Type, Nonlinear Analysis: Theory, Methods and Applications, 1986, vol. 10, no. 12, pp. 1373–1383. DOI: 10.1016/0362-546X(86)90108-2.
  • Berkovits, J. and Mustonen, V., Nonlinear Mappings of Monotone Type I. Classification and Degree Theory, Preprint no. 2/88, Mathematics, University of Oulu.
  • Fan, X. L. and Zhang, Q. H. Existence of Solutions for p(x)-Laplacian Dirichlet Problem, Nonlinear Analysis: Theory, Methods and Applications, 2003, vol. 52, no. 8, pp. 1843–1852. DOI: 10.1016/S0362-546X(02)00150-5.
  • Ilia¸s, P. S. Existence and Multiplicity of Solutions of a p(x)-Laplacian Equations in a Bounded Domain, Revue Roumaine des Mathematiques Pures et Appliquees, 2007, vol. 52, no. 6, pp. 639–653.
  • Fan, X. L. and Zhao, D. On the Spaces Lp(x)() and Wm,p(x)(), Journal of Mathematical Analysis and Applications, 2001, vol. 263, no. 2, pp. 424–446. DOI: 10.1006/jmaa.2000.7617.
  • Kov´aˇcik, O. and R´akosn´ık, J. On Spaces Lp(x) and W1,p(x), Czechoslovak Mathematical Journal, 1991, vol. 41, pp. 592–618.
  • Zhao, D., Qiang, W. J. and Fan, X. L. On Generalizerd Orlicz Spaces Lp(x)(), Journal of Gansu Sciences, 1996, vol. 9, no. 2, pp. 1–7.
  • Samko, S. G. Density of C∞0 (RN) in the Generalized Sobolev Spaces Wm,p(x)(RN), Doklady Akademii Nauk, 1999, vol. 369, no. 4, pp. 451–454.
  • Chang, K. C. Critical Point Theory and Applications, Shanghai, Shanghai Scientific and Technology Press, 1986.
  • Zeidler, E. Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators, New York, Springer-Verlag, 1985.
Еще
Статья научная