Exploring Influential Factors and Conditions Shaping Statistical Literacy Among Undergraduate Students in Mathematics Education

Автор: Heri Retnawati, Kana Hidayati, Ezi Apino, Ibnu Rafi, Munaya Nikma Rosyada

Журнал: International Journal of Cognitive Research in Science, Engineering and Education @ijcrsee

Рубрика: Original research

Статья в выпуске: 1 vol.12, 2024 года.

Бесплатный доступ

Statistical literacy (hereafter SL) has been considered an important learning outcome in statistics learning in higher education, yet studies that focus on investigating the factors and conditions that influence students’ SL, especially mathematics education students, are still limited. This study seeks to uncover the factors and conditions that significantly contribute to the SL of mathematics education students. This survey study involved 1,287 mathematics education students from 21 higher education institutions in Indonesia. Linear regression analysis involving four predictor variables (i.e., gender, status of higher education institution, laptop ownership, and research preference) was performed to determine the variables that contributed significantly in predicting SL achievement. The results revealed that gender, higher education institution’s status, and laptop ownership contributed significantly, but research preference was not significant in predicting mathematics education students’ SL. Furthermore, laptop ownership was found to have the highest contribution in predicting mathematics education students’ SL. All findings and their implications are discussed.

Еще

Gender, laptop ownership, mathematics education, research preference, statistical literacy, status of higher education institution

Короткий адрес: https://sciup.org/170202065

IDR: 170202065   |   DOI: 10.23947/2334-8496-2024-12-1-1-17

Список литературы Exploring Influential Factors and Conditions Shaping Statistical Literacy Among Undergraduate Students in Mathematics Education

  • Aizikovitsh-Udi, E., & Kuntze, S. (2014). Critical thinking as an impact factor on statistical literacy – Theoretical frameworks and results from an interview study. In K. Makar, B. de Sousa, & R. Gould (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS9): Sustainability in Statistics Education. International Statistical Institute/International Association for Statistical Education.
  • Aksoy, E. Ç., & Bostan, M. I. (2021). Seventh graders’ statistical literacy: An investigation on bar and line graphs. International Journal of Science and Mathematics Education, 19(2), 397–418. https://doi.org/10.1007/s10763-020-10052-2 DOI: https://doi.org/10.1007/s10763-020-10052-2
  • Arroyo-Barrigüete, J. L., Carabias-López, S., Borrás-Pala, F., & Martín-Antón, G. (2023). Gender differences in mathematics achievement: The case of a business school in Spain. SAGE Open, 13(2), 1–14. https://doi.org/10.1177/21582440231166922 DOI: https://doi.org/10.1177/21582440231166922
  • Austerschmidt, K. L., Stappert, A., Heusel, H., & Bebermeier, S. (2022). Using a video presentation on variance and covariance in the teaching of statistics. Teaching Statistics, 44(1), 15–20. https://doi.org/10.1111/test.12292 DOI: https://doi.org/10.1111/test.12292
  • Aziz, A. M., & Rosli, R. (2021). A systematic literature review on developing students’ statistical literacy skills. Journal of Physics: Conference Series, 1806(1), 1–6. https://doi.org/10.1088/1742-6596/1806/1/012102 DOI: https://doi.org/10.1088/1742-6596/1806/1/012102
  • Carmichael, C., Callingham, R., Watson, J., & Hay, I. (2009). Factors influencing the development of middle schools students’ interest in statistical literacy. Statistics Education Research Journal, 8(1), 62–81. https://doi.org/10.52041/serj.v8i1.459 DOI: https://doi.org/10.52041/serj.v8i1.459
  • Carvalho, C., & Solomon, Y. (2012). Supporting statistical literacy: What do culturally relevant/realistic tasks show us about the nature of pupil engagement with statistics? International Journal of Educational Research, 55, 57–65. https://doi.org/10.1016/j.ijer.2012.06.006 DOI: https://doi.org/10.1016/j.ijer.2012.06.006
  • Check, J., & Schutt, R. K. (2012). Survey research. In J. Check & R. K. Schutt (Eds.), Research methods in education (pp. 159–185). Sage Publication. DOI: https://doi.org/10.4135/9781544307725
  • Cheema, J. R. (2015). The private–public literacy divide amid educational reform in Qatar: What does PISA tell us? International Review of Education, 61(2), 173–189. https://doi.org/10.1007/s11159-015-9479-8 DOI: https://doi.org/10.1007/s11159-015-9479-8
  • Cheema, J. R. (2016). Public versus private schools in Qatar: Is there a literacy gap? Research in Education, 95(1), 5–18. https://doi.org/10.7227/RIE.0017 DOI: https://doi.org/10.7227/RIE.0017
  • Chick, H., & Pierce, R. (2012). Teaching for statistical literacy: Utilising affordances in real-world data. International Journal of Science and Mathematics Education, 10(2), 339–362. https://doi.org/10.1007/s10763-011-9303-2 DOI: https://doi.org/10.1007/s10763-011-9303-2
  • Chick, H., & Pierce, R. (2013). The statistical literacy needed to interpret school assessment data. Mathematics Teacher Education and Development, 15(2), 5–26.
  • Dani, A., & Al Quraan, E. (2023). Investigating research students’ perceptions about statistics and its impact on their choice of research approach. Heliyon, 9(10), 1–10. https://doi.org/10.1016/j.heliyon.2023.e20423 DOI: https://doi.org/10.1016/j.heliyon.2023.e20423
  • Edgar, T. W., & Manz, D. O. (2017). Exploratory study. In T. W. Edgar & D. O. Manz (Eds.), Research methods for cyber security (pp. 95–130). Syngress. https://doi.org/10.1016/B978-0-12-805349-2.00004-2 DOI: https://doi.org/10.1016/B978-0-12-805349-2.00004-2
  • El Refae, G. A., Kaba, A., & Eletter, S. (2021). The impact of demographic characteristics on academic performance: Face-to-face learning versus distance learning implemented to prevent the spread of COVID-19. The International Review of Research in Open and Distributed Learning, 22(1), 91–110. https://doi.org/10.19173/irrodl.v22i1.5031 DOI: https://doi.org/10.19173/irrodl.v22i1.5031
  • Emmioğlu, E., & Capa-Aydin, Y. (2012). Attitudes and achievement in statistics: A meta-analysis study. Statistics Education Research Journal, 11(2), 95–102. https://doi.org/10.52041/serj.v11i2.332 DOI: https://doi.org/10.52041/serj.v11i2.332
  • Forgasz, H., Hall, J., & Robinson, T. (2022). Evaluating pre-service teachers’ statistical literacy capabilities. Mathematics Education Research Journal, 1–28. https://doi.org/10.1007/s13394-022-00438-6 DOI: https://doi.org/10.1007/s13394-022-00438-6
  • Gal, I. (2002). Adults’ statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70(1), 1–25. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x DOI: https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
  • Gal, I. (2003). Expanding conceptions of statistical literacy: An analysis of products from statistics agencies. Statistics Educational Research Journal, 2(1), 3–21. https://doi.org/10.52041/serj.v2i1.556 DOI: https://doi.org/10.52041/serj.v2i1.556
  • Gonda, D., Pavlovičová, G., Ďuriš, V., & Tirpáková, A. (2022). Implementation of pedagogical research into statistical courses to develop students’ statistical literacy. Mathematics, 10(11), 1–17. https://doi.org/10.3390/math10111793 DOI: https://doi.org/10.3390/math10111793
  • Gonulal, T. (2018). An investigation of the predictors of statistical literacy in second language acquisition. Eurasian Journal of Applied Linguistics, 4(1), 49–70. https://doi.org/10.32601/ejal.460631 DOI: https://doi.org/10.32601/ejal.460631
  • Haack, D. G. (1979a). Statistical literacy: A guide to interpretation. Duxbury Press.
  • Haack, D. G. (1979b). Teaching statistical literacy. Teaching Statistics, 1(3), 74–76. DOI: https://doi.org/10.1111/j.1467-9639.1979.tb00741.x
  • Hassan, A., Ghaffar, A., & Zaman, A. (2020). An investigative study on university students’ statistical literacy in Pakistan. Sir Syed Journal of Education & Social Research, 3(1), 159–164. https://doi.org/10.36902/sjesr-vol3-iss1-2020(159-164) DOI: https://doi.org/10.36902/sjesr-vol3-iss1-2020(159-164)
  • Koparan, T. (2019). Examination of the dynamic software-supported learning environment in data analysis. International Journal of Mathematical Education in Science and Technology, 50(2), 277–291. https://doi.org/10.1080/0020739X.2018.1494861 DOI: https://doi.org/10.1080/0020739X.2018.1494861
  • Kposowa, A. J., & Valdez, A. D. (2013). Student laptop use and scores on standardized tests. Journal of Educational Computing Research, 48(3), 345–379. https://doi.org/10.2190/EC.48.3.d DOI: https://doi.org/10.2190/EC.48.3.d
  • Kristanto, Y. D. (2018). Technology-enhanced pre-instructional peer assessment: Exploring students’ perceptions in a Statistical Methods course. REID (Research and Evaluation in Education), 4(2), 105–116. https://doi.org/10.21831/reid.v4i2.20951 DOI: https://doi.org/10.21831/reid.v4i2.20951
  • Kurnia, A. B., Lowrie, T., & Patahuddin, S. M. (2023). The development of high school students’ statistical literacy across grade level. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-023-00449-x DOI: https://doi.org/10.1007/s13394-023-00449-x
  • Liestari, S. P., & Muhardis, M. (2021). Hierarchical linear modeling for determining the effect of ICT literacy on mathematics achievement. REID (Research and Evaluation in Education), 7(1), 78–87. https://doi.org/10.21831/reid.v7i1.39181 DOI: https://doi.org/10.21831/reid.v7i1.39181
  • Lloyd, S. A., & Robertson, C. L. (2012). Screencast tutorials enhance student learning of statistics. Teaching of Psychology, 39(1), 67–71. https://doi.org/10.1177/0098628311430640 DOI: https://doi.org/10.1177/0098628311430640
  • Loewen, S., Lavolette, E., Spino, L. A., Papi, M., Schmidtke, J., Sterling, S., & Wolff, D. (2014). Statistical literacy among applied linguists and second language acquisition researchers. TESOL Quarterly, 48(2), 360–388. https://doi.org/10.1002/tesq.128 DOI: https://doi.org/10.1002/tesq.128
  • Lukman, L., & Wahyudin, W. (2020). Statistical literacy of undergraduate students in Indonesia: Survey studies. Journal of Physics: Conference Series, 1521(3), 1–5. https://doi.org/10.1088/1742-6596/1521/3/032050 DOI: https://doi.org/10.1088/1742-6596/1521/3/032050
  • MacFeely, S., Campos, P., & Helenius, R. (2017). Key success factors for statistical lteracy poster competitions. Statistics Education Research Journal, 16(1), 202–216. DOI: https://doi.org/10.52041/serj.v16i1.224
  • McLauchlan, C., & Schonlau, M. (2016). Statistical literacy in the classroom: Should introductory statistics courses rethink their goals? Statistics, Politics and Policy, 7(1–2). https://doi.org/10.1515/spp-2017-0001 DOI: https://doi.org/10.1515/spp-2017-0001
  • Meinck, S., & Brese, F. (2019). Trends in gender gaps: Using 20 years of evidence from TIMSS. Large-Scale Assessments in Education, 7(1), 8. https://doi.org/10.1186/s40536-019-0076-3 DOI: https://doi.org/10.1186/s40536-019-0076-3
  • Ncube, B., & Moroke, N. D. (2015). Students’ perceptions and attitudes towards statistics in South African university: An exploratory factor analysis approach. Journal of Governance and Regulation, 4(3), 231–240. https://doi.org/10.22495/jgr_v4_i3_c2_p5 DOI: https://doi.org/10.22495/jgr_v4_i3_c2_p5
  • Nenty, H. J. (2009). Research orientation and research-related behaviour of graduate education students. Journal of Social Sciences, 19(1), 9–17. https://doi.org/10.1080/09718923.2009.11892685 DOI: https://doi.org/10.1080/09718923.2009.11892685
  • OECD. (2019). PISA 2018 results: Combined executive summaries volume I, II & III. OECD Publishing. https://www.oecd.org/pisa/Combined_Executive_Summaries_PISA_2018.pdf
  • Pamungkas, A. S., & Khaerunnisa, E. (2020). The analysis of student’s statistical literacy based on prior knowledge and mathematical self esteem. Journal for the Mathematics Education and Teaching Practices, 1(1), 43–51.
  • Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Comparing tablets and PCs in teaching mathematics: An attempt to improve mathematics competence in early childhood education. Preschool and Primary Education, 4(2), 241. https://doi.org/10.12681/ppej.8779 DOI: https://doi.org/10.12681/ppej.8779
  • Pilgrim, J., & Martinez, E. E. (2013). Defining literacy in the 21st century: A guide to terminology and skills. Texas Journal of Literacy Education, 1(1), 60–69.
  • Ramirez, C., Schau, C., & Emmioğlu, E. (2012). The importance of attitudes in statistics education. Statistics Education Research Journal, 11(2), 57–71. https://doi.org/10.52041/serj.v11i2.329 DOI: https://doi.org/10.52041/serj.v11i2.329
  • Reisdorf, B. C., Triwibowo, W., & Yankelevich, A. (2020). Laptop or bust: How lack of technology affects student achievement. American Behavioral Scientist, 64(7), 927–949. https://doi.org/10.1177/0002764220919145 DOI: https://doi.org/10.1177/0002764220919145
  • Reynolds, C. R., Livingston, R. B., & Willson, V. (2010). Measurement and assessment in education (2nd ed.). Pearson Education.
  • Risqi, E. N., & Ekawati, R. (2020). How is the statistical literacy of upper secondary students based on gender differences? Jurnal Riset Pendidikan dan Inovasi Pembelajaran Matematika [Journal of Mathematics Education Research and Learning Innovation], 4(1), 53–67. https://doi.org/10.26740/jrpipm.v4n1.p53-67 DOI: https://doi.org/10.26740/jrpipm.v4n1.p53-67
  • Rudner, L. M., & Schafer, W. D. (Eds.). (2002). What teachers need to know about assessment. National Education Association of the United States.
  • Rumsey, D. J. (2002). Statistical literacy as a goal for introductory statistics courses. Journal of Statistics Education, 10(3), 4. https://doi.org/10.1080/10691898.2002.11910678 DOI: https://doi.org/10.1080/10691898.2002.11910678
  • Rusilowati, A., Negoro, R. A., Subali, B., & Aji, M. P. (2022). Evaluating ICT literacy: Physics ICT test based on Scratch Programming for high school students. REID (Research and Evaluation in Education), 8(2), 169–180. https://doi.org/10.21831/reid.v8i2.49093 DOI: https://doi.org/10.21831/reid.v8i2.49093
  • Schield, M. (2010). Assessing statistical literacy: Take CARE. In P. Bidgood, N. Hunt, & F. Jolliffe (Eds.), Assessment methods in statistical education: An international perspective (pp. 133–152). John Wiley & Sons. DOI: https://doi.org/10.1002/9780470710470.ch11
  • Setiawan, E. P., & Sukoco, H. (2021). Exploring first year university students’ statistical literacy: A case on describing and visualizing data. Journal on Mathematics Education, 12(3), 427–448. https://doi.org/10.22342/jme.12.3.13202.427-448 DOI: https://doi.org/10.22342/jme.12.3.13202.427-448
  • Sharma, S. (2017). Definitions and models of statistical literacy: A literature review. Open Review of Educational Research, 4(1), 118–133. https://doi.org/10.1080/23265507.2017.1354313 DOI: https://doi.org/10.1080/23265507.2017.1354313
  • Sosa, G. W., Berger, D. E., Saw, A. T., & Mary, J. C. (2011). Effectiveness of computer-assisted instruction in statistics: A meta-analysis. 81(1), 97–128. https://doi.org/10.3102/0034654310378174 DOI: https://doi.org/10.3102/0034654310378174
  • Sproesser, U., Kuntze, S., & Engel, J. (2014). A multilevel perspective on factors influencing students’ statistical literacy. In K. Makar, B. de Sousa, & R. Gould (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS9): Sustainability in Statistics Education. International Statistical Institute/International Association for Statistical Education.
  • Stratton, S. J. (2021). Population research: Convenience sampling strategies. Prehospital and Disaster Medicine, 36(4), 373–374. https://doi.org/10.1017/S1049023X21000649 DOI: https://doi.org/10.1017/S1049023X21000649
  • Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2 DOI: https://doi.org/10.1007/s11165-016-9602-2
  • Utomo, D. P. (2021). An analysis of the statistical literacy of middle school students in solving TIMSS problems. International Journal of Education in Mathematics, Science and Technology, 9(2), 181–197. https://doi.org/10.46328/ijemst.1552 DOI: https://doi.org/10.46328/ijemst.1552
  • Wallman, K. K. (1993). Enhancing statistical literacy: Enriching our society. Journal of the American Statistical Association, 88(421), 1–8. https://doi.org/10.1080/01621459.1993.10594283 DOI: https://doi.org/10.1080/01621459.1993.10594283
  • Wang, X. S., Perry, L. B., Malpique, A., & Ide, T. (2023). Factors predicting mathematics achievement in PISA: A systematic review. Large-Scale Assessments in Education, 11(1), 24. https://doi.org/10.1186/s40536-023-00174-8 DOI: https://doi.org/10.1186/s40536-023-00174-8
  • Watson, J. M. (1997). Assessing statistical thinking using the media. In I. Gal & J. B. Garfield (Eds.), The assessment challenge in statistics education (pp. 107–121). IOS Press.
  • Watson, J. M. (2006). Statistical literacy at school: Growth and goals. Lawrence Erlbaum Associates.
  • Watson, J. M., & Callingham, R. (2003). Statistical literacy: A complex hierarchical construct. Statistics Education Research Journal, 2(2), 3–46. https://doi.org/10.52041/serj.v2i2.553 DOI: https://doi.org/10.52041/serj.v2i2.553
  • Wittwer, J., & Senkbeil, M. (2008). Is students’ computer use at home related to their mathematical performance at school? Computers & Education, 50(4), 1558–1571. https://doi.org/10.1016/j.compedu.2007.03.001 DOI: https://doi.org/10.1016/j.compedu.2007.03.001
  • Yolcu, A. (2014). Middle school students’ statistical literacy: Role of grade level and gender. Statistics Education Research Journal, 13(2), 118–131. https://doi.org/10.52041/serj.v13i2.285 DOI: https://doi.org/10.52041/serj.v13i2.285
  • Yotongyos, M., Traiwichitkhun, D., & Kaemkate, W. (2015). Undergraduate students’ statistical literacy: A survey study. Procedia-Social and Behavioral Sciences, 191, 2731–2734. https://doi.org/10.1016/j.sbspro.2015.04.328 DOI: https://doi.org/10.1016/j.sbspro.2015.04.328
Еще
Статья научная