Formation of investment portfolios of two assets based on forecast returns using the ARFIMA-GARCH model

Бесплатный доступ

The paper tests the hypothesis that the formation of investment portfolios of two assets based on predicted returns obtained using fractal models with conditional heteroscedasticity (ARFIMA-GARCH) allows to obtain portfolios with better characteristics than those obtained using the ARFIMA model. A computational experiment on artificial data and real data from the Russian stock market was carried out. The software implementation of the hypothesis testing algorithm was carried out using Python and R programming languages. The following results were obtained. Average absolute forecast error of the ARFIMA-GARCH model differs from the ARFIMA model error within the limits of error, statistically significant difference is not revealed (it is true for both model and real data). At the same time, portfolios formed using the GARCH model have, on average, higher returns, and a better return to risk ratio in comparison with portfolios formed using the ARFIMA model. Therefore, the hypothesis about the benefits of fractal GARCH models is not rejected.

Еще

Investment portfolio, financial time series, return forecasting, fractal econometric models

Короткий адрес: https://sciup.org/149137017

IDR: 149137017   |   DOI: 10.15688/ek.jvolsu.2021.2.11

Список литературы Formation of investment portfolios of two assets based on forecast returns using the ARFIMA-GARCH model

  • Aouni B., Doumpos M., Pйrez-Gladish B., Steuer R. On the Increasing Importance of Multiple Criteria Decision Aid Methods for Portfolio Selection. Journal of the Operational Research Society, 2018, vol. 69, pp. 1525-1542. DOI: 10.1080/01605682.2018.1475118
  • Balagula Yu.M. Prognozirovanie sutochnyh cen na ORJeM RF s pomoshh'ju modeli ARFIMA [Forecasting Daily Spot Prices in the Russian Electricity Market With the Arfima Model]. Prikladnaja Jekonometrika [Applied Econometrics], 2020, vol. 57, pp. 89-101. DOI: 10.22394/1993760120205789101
  • Bollerslev T. Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 1986, vol. 31, pp. 307-327.
  • Chichaev I.A., Popov V.Yu. Ob odnom podhode k vychisleniju indeksa Hersta finansovyh vremennyh rjadov i ih approksimacii fraktal'nym brounovskim dvizheniem [About One Approach for Financial Time Series' Hurst Index Computation and Their Approximation Using Fractal Brownian Motion]. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2013, no. 2. URL: https://www.science-education.ru/ru/article/view?id=8698 (accessed 14 March 2021).
  • Garafutdinov R., Gurova E. The Formation of Investment Portfolios Based on Forecasted Income With the Use of Fractal Models. Mathematical Modeling, 2019, no. 3, pp. 86-88.
  • Gubanova E.V., Sokolova I.S., Solovyova S.V. Ispol'zovanie finansovyh instrumentov pri formirovanii jeffektivnogo portfelja cennyh bumag [Use of Financial Instruments When Forming the Effective Portfolio of Securities]. Vestnik NGIEI [Bulletin NGIEI], 2016, no. 9 (64), pp. 123-137.
  • Markowitz H. Portfolio Selection. Journal of Finance, 1952, no. 7, pp. 77-91.
  • Semenenko M.G. Model' Markovica: matematicheskie aspekty i komp'juternaja realizacija [Markowitz Model: Mathematical Aspects and Computer Implementation]. Sovremennye informacionnye tehnologii i IT-obrazovanie [Modern Information Technologies and IT-Education], 2015, no. 11, pp. 306-309.
  • Simonov P.M., Garafutdinov R.V. Modelirovanie i prognozirovanie dinamiki kursov finansovykh instrumentov s primeneniem ekonometricheskikh modelei i fraktal'nogo analiza [Modeling and Forecasting of Financial Instruments Dynamics Using Econometrics Models and Fractal Analysis]. Vestnik Permskogo universiteta. Ser. "Jekonomika" [Perm University Herald. Economy], 2019, vol. 14, no. 2, pp. 268-288. DOI: 10.17072/1994-9960-2019-2-268-288
  • Simonov P.M., Akhunyanova S.A. Sravnitel'nyj analiz metodik AR-GARCH i p-adicheskogo prognozirovanija volatil'nosti finansovogo rynka [Comparative Analysis of AR-Garch and p-adic Methods of the Prediction of the Financial Market Volatility]. Vestnik Permskogo universiteta. Ser. "Jekonomika" [Perm University Herald. Economy], 2019, vol. 14, no. 1, pp. 69-92. DOI: 10.17072/1994-9960-2019-1-69-92
Еще
Статья научная