Generalization of the Ostrowski inequalities on time scales

Автор: Khan A.R., Mehmood F., Shaikh M.A.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.25, 2023 года.

Бесплатный доступ

The idea of time scales calculus’ theory was initiated and introduced by Hilger (1988) in his PhD thesis order to unify discret and continuous analysis and to expend the discrete and continous theories to cases ``in between''. Since then, mathematical research in this field has exceeded more than 1000 publications and a lot of applications in the fields of science, i.e., operations research, economics, physics, engineering, statistics, finance and biology. Ostrowski proved an inequality to estimate the absolute deviation of a differentiable function from its integral mean. This result was obtained by applying the Montgomery identity. In the present paper we derive a generalization of the Montgomery identity to the various time scale versions such as discrete case, continuous case and the case of quantum calculus, by obtaining this generalization of Montgomery identity we would prove our results about the generalization of the Ostrowski inequalities (without weighted case) to the several time scales such as discrete case, continuous case and the case of quantum calculus and recapture the several published results of different authors of various papers and thus unify corresponding discrete version and continuous version. Similarly we would also derive our results about the generalization of the Ostrowski inequalities (weighted case) to the different time scales such as discrete case and continuous case and recapture the different published results of several authors of various papers and thus unify corresponding discrete version and continuous version. Moreover, we would use our obtained results (without weighted case) to the case of quantum calculus.

Еще

The ostrowski inequality, the holder inequality, the montgomery identity, time scales, quantum calculus

Короткий адрес: https://sciup.org/143180474

IDR: 143180474   |   DOI: 10.46698/q4172-3323-1923-j

Список литературы Generalization of the Ostrowski inequalities on time scales

  • Ostrowski, A. Uber die Absolutabweichung einer Differenzierbaren Funktion von Ihrem Integralmittelwert, Commentarii Mathematici Helvetici, 1937, vol. 10, no. 1, pp. 226-227. DOI: 10.1007/BF01214290.
  • Hassan, A., Khan, A. R., Mehmood, F. and Khan, M. BF-Ostrowski Type Inequalities via 0-A-Convex Functions, International Journal of Computer Science and Network Security, 2021, vol. 21, no. 10, pp. 177-183. DOI: 10.22937/IJCSNS.2021.21.10.24.
  • Hassan, A., Khan, A. R., Mehmood, F. and Khan, M. Fuzzy Ostrowski Type Inequalities via h-Convex, Journal of Mathematical and Computational Science, 2022, vol. 12, pp. 1-15. DOI: 10.28919/jmcs/6794.
  • Hassan, A., Khan, A. R., Mehmood, F. and Khan, M. Fuzzy Ostrowski Type Inequalities via 0-A-Convex Functions, Journal of Mathematical and Computational Science, 2023, vol. 28, pp. 224-235. DOI: 10.22436/jmcs.028.03.02.
  • Bohner, M., Khan, A. R., Khan, M., Mehmood, F. and Shaikh, M. A. Generalized Perturbed OstrowskiType Inequalities, Annales Universitatis Mariae Curie-Sklodowska, Sectio A — Mathematica, 2021, vol. 75, no. 2, pp. 13-29. DOI: 10.17951/a.2021.75.2.13-29.
  • Dragomir, S. S., Khan, A. R., Khan, M., Mehmood, F. and Shaikh, M. A. A New Integral Version of Generalized Ostrowski-Griiss Type Inequality with Applications, Journal of King Saud University — Science, 2022, vol. 34, no. 5, pp. 1-6. DOI: 10.1016/j.jksus.2022.102057.
  • Shaikh, M. A., Khan, A. R., and Mehmood, F. Estimates for Weighted Ostrowski-Griiss Type Inequalities with Applications, Analysis, 2022, vol. 42, no. 3, pp. 1-11. DOI: 10.1515/anly-2021-0044.
  • MitrinoviC, D. S., PecariC, J. E. and Fink, A. M. Inequalities Involving Functions and their Integrals and Derivatives, Mathematics and its Applications (East European Series), vol. 53, Dordrecht, Kluwer Academic Publisher Group, 1991, 565 p. DOI: 10.1007/978-94-011-3562-7.
  • Hilger, S. Ein Mafikettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Uni-versitat Wurzburg, 1988.
  • Bohner, M. and Georgiev, S. G. Multivariable Dynamic Calculus on Time Scales, Springer International Publishing, 2016. DOI: 10.1007/978-3-319-47620-9.
  • Bohner, M. and Peterson, A. Dynamic Equations on Time Scales, Boston, MA, Birkhaiuser Boston Inc., 2001. DOI: 10.1007/978-1-4612-0201-1.
  • Bohner, M. Calculus of Variations On Time Scales, Dynamic Systems and Applications, 2004, vol. 13, no. 3-4, pp. 339-349.
  • Bartosiewicz, Z., Martins, N. and Torres, D. F. M. The Second Euler-Lagrange Equation of Variational Calculus on Time Scales, European Journal of Control, 2011, vol. 17, no. 1, pp. 9-18. DOI: 10.3166/ejc.17.9-18.
  • Ferreira, R. A. C., Malinowska, A. B. and Torres, D. F. M. Optimality Conditions for the Calculus of Variations with Higher-Order Delta Derivatives, Applied Mathematics Letters, 2011, vol. 24, no. 1, pp. 87-92. DOI: 10.1016/j.aml.2010.08.023.
  • Hilscher, R. and Zeidan, V. Calculus of Variations on Time Scales: Weak Local Piecewise C^ Solutions with Variable Endpoints, Journal of Mathematical Analysis and Applications, 2004, vol. 289, no. 1, pp. 143-166. DOI: 10.1016/j.jmaa.2003.09.031.
  • Hilscher, R. and Zeidan, V. Weak Maximum Principle and Accessory Problem for Control Problems on Time Scales, Nonlinear Analysis: Theory, Methods and Applications, 2009, vol. 70, no. 9, pp. 3209-3226. DOI: 10.1016/j.na.2008.04.025.
  • Malinowska, A. B., Martins, N. and Torres, D. F. M. Transversality Conditions for Infinite Horizon Variational Problems on Time Scales, Optimization Letters, 2011, vol. 5, no. 1, pp. 41-53. DOI: 10.1007/s11590-010-0189-7.
  • Malinowska, A. B. and Torres, D. F. M. Natural Boundary Conditions in the Calculus of Variations, Mathematical Methods in the Applied Sciences, 2010, vol. 33, no. 14, pp. 1712-1722. DOI: 10.1002/mma.1289.
  • Bohner, M. and Matthews, T. Ostrowski Inequalities on Time Scales, Journal of Inequalities in Pure and Applied Mathematics, 2008, vol. 9, no. 1, pp. 1-8.
  • Dragomir, S. S. The Discrete Version of Ostrowski's Inequality in Normed Linear Spaces, Journal of Inequalities in Pure and Applied Mathematics, 2002, vol. 3, no. 1, art. 2.
  • Dragomir, S. S. Ostrowski Type Inequalities for Isotonic Linear Functionals, Journal of Inequalities in Pure and Applied Mathematics, 2002, vol. 3, no. 5, art. 68.
  • Gavrea, B. and Gavrea, I. Ostrowski Type Inequalities from a Linear Functional Point of View, Journal of Inequalities in Pure and Applied Mathematics, 2000, vol. 1, no. 2, art. 11.
Еще
Статья научная