Генетическая дифференциация индеек разных пород по микросателлитным маркерам

Автор: Фисинин В.И., Селионова М.И., Ковалев Д.А., Шинкаренко Л.А.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Генетика и геномика

Статья в выпуске: 4 т.56, 2021 года.

Бесплатный доступ

Ению важная роль отводится изучению генетических особенностей, в том числе с использованием микросателлитных локусов. При реализации международного проекта по изучению генетического биоразнообразия домашних животных (Global Project for the Measurement of Domestic Animal Genetic Diversity, MoDAD) по микросателлитным маркерам было исследовано 50 популяций разных видов птицы. Изучение биоразнообразия индеек на первоначальном этапе проводилось с использованием микросателлитных локусов курицы ( Gallus gallus ), затем были установлены информативные локусы для генома индеек ( Meleagris gallopavo ). Накоплены данные о генетических профилях, сходстве, различии и межпородной дифференциации пород индеек, разводимых в США, Италии, Венгрии и других странах. В настоящей работе впервые установлено генетическое взаимоотношение между породами индеек российской селекции и генофондной популяции университета Миннесоты на основе микросателлитных маркеров. Показано, что величина генетических дистанций между породами во многом определяется их происхождением, ареалом разведения, а также вкладом генофонда одних пород при создании и совершенствовании продуктивных качеств других. Цель работы - изучить генетическое разнообразие и межпородную дифференциацию индеек российской и зарубежной селекции с использованием микросателлитных локусов. Работа выполнялась на Северо-Кавказской зональной опытной станции по птицеводству в 2019 году. У 30 особей каждой из семи пород индеек ( Meleagris gallopavo ) отечественной селекции (белой широкогрудой, BSH; бронзовой северокавказской, BrSK; белой северокавказской, BeSK; серебристой северокавказской, SSK; московской белой, MB; черной тихорецкой, CHT; узбекской палевой, UP) были отобраны образцы крови. ДНК выделяли в соответствии с протоколом к коммерческому набору АмплиПрайм ДНК-сорб-В («ИнтерЛабСервис», Россия). Количество и качество выделенной ДНК контролировали с использованием спектрофотометра NanoDrop 2000 («Thermo Scientific», США) стандартным спектрофотометрическим методом. Генотипирование проводили по 12 микросателлитным локусам MNT9-MNT20. Для сравнения с генотипами индеек отечественных пород использовали описанные генотипы индеек (AM) генофондной фермы университета Миннесоты (Nicholas Turkey Breeding Farms). Вычисляли среднее число и число эффективных аллелей на локус (Na, Ne), степень наблюдаемой и ожидаемой гетерозиготности (Но, Не), индекс Шеннона (I). Генетическую структуру популяций оценивали на основании значений Fst и генетических дистанций по M. Nei. Для построения филогенетического дерева применяли метод ближайшего соседа (Neighbor Joining Method). Российские породы индеек и популяция АМ характеризовались низким генетическим разнообразием. Число выявленных аллелей в локусах микросаттеллитов в целом по породной выборке варьировало от 1 до 4, число аллелей на один локус колебалось от 1,0 до 1,83. Наименьшее генетическое различие установлено между породами MB и BSH. Породы BeSK, SSK и BrSK сформировали отдельный узел, при этом наибольшее генетическое удаление проявляла BrSK, образуя наибольшую по генетическому расстоянию ветвь. В отдельные ветви на относительно равном удалении выделились породы CHT, UP и популяция АМ. Таким образом, получено подтверждение, что генофонд исследованных пород и популяций домашних индеек характеризуется незначительным генетическим разнообразием по сравнению с генофондом других видов сельскохозяйственных животных.

Еще

Породы индеек, микросателлиты, филогенетический анализ, генетическое разнообразие

Короткий адрес: https://sciup.org/142231375

IDR: 142231375   |   DOI: 10.15389/agrobiology.2021.4.651rus

Список литературы Генетическая дифференциация индеек разных пород по микросателлитным маркерам

  • Столповский Ю.А., Захаров-Гезехус И.А.Проблема сохранения генофондов доместицированных животных. Вавиловский журнал генетики и селекции, 2017, 21(4): 477-486 (doi: 10.18699/VJ17.266).
  • Jarne P., Lagoda P.J.L. Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution, 1996, 11(10): 424-429 (doi: 10.1016/0169-5347(96)10049-5).
  • Gholizadeh M., Mianji G.R. Use of microsatellite markers in poultry research. International Journal of Poultry Science, 2007, 6(2): 145-153 (doi: 10.3923/ijps.2007.145.153).
  • Putman A.I., Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology Evolution, 2014, 4(22): 4399-4428 (doi: 10.1002/ece3.1305).
  • Tan C., Bian C., Yang D., Li N., Wu Z.-F., Hu X.-X. Application of genomic selection in farm animal breeding. Yi Chuan, 2017, 39(11): 1033-1045 (doi: 10.16288/j.yczz.17-286).
  • Weigend S., Romanov M.N. The world watch list for domestic animal diversity in the context of conservation and utilisation of poultry biodiversity. World's Poultry Science Journal, 2002, 58(4): 411-430 (doi: 10.1079/WPS20020031).
  • Groeneveld L.F., Lenstra J.A., Eding H., Toro M. A., Scherf B., Pilling D., Negrini R., Finlay E.K., Jianlin H., Groeneveld E., Weigend S., the GLOBALDIV Consortium. Genetic diversity in farm animals — a review. Animal Genetics, 2010, 41(s1): 6-31 (doi: 10.1111/j.1365-2052.2010.02038.x).
  • Soller M., Weigend S., Romanov M.N., Dekkers J.C.M., Lamont S.J. Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poultry Science, 2006, 85(12): 2061-2078 (doi: 10.1093/ps/85.12.2061).
  • Wilkinson S., Wiener P., Teverson D., C.S.Haley, Hjcking P.M. Characterization of the genetic diversity, structure and admixture of British chicken breeds. Animal Genetics, 2012, 43(5): 552-563 (doi: 10.1111/j.1365-2052.2011.02296.x).
  • Reed K.M., Mendoza K.M., Beattie C.W. Comparative analysis of microsatellite loci in chicken and turkey. Genome, 2000, 43(5): 796-802.
  • Colombo E., Strillacci G., Cozzi M.C., Madeddu M., Mangiagalli M.G., Mosca F., Zaniboni L., Bagnato A., Cerolini S. Feasibility study on the FAO chicken microsatellite panel to assess genetic variability in the turkey (Meleagris gallopavo). Italian Journal of Animal Science, 2014, 13(4): 887-890 (doi: 10.4081/ijas.2014.3334).
  • Новгородова И.П., Гладырь Е.А., Фисинин В.И., Зиновьева Н.А. Идентификация породной принадлежности кур на основе микросателлитного анализа. Достижения науки и техники АПК,2015, 29(11): 88-90.
  • Новгородова И.П., Волкова В.В., Гладырь Е.А., Селионова М.И., Растоваров Е.И., Фисинин В.И., Зиновьева Н.А. Изучение информативности микросателлитов кур G. Gallusдля характеристики аллелофонда индеек M. gallopavo. Достижения науки и техники АПК,2011, 10: 66-67.
  • Reed K.M., Chaves L.D., Garbe J.R., Da Y., Harry D.E. Allelic variation and genetic linkage of avian microsatellites in a new turkey population for genetic mapping. Cytogenetic and Genome Research, 2003, 102(1-4): 331-339 (doi: 10.1159/000075771).
  • Reed K.M., Chaves L.D., Knutson T.P., Krueth S.B., Ashwell C.M., Burt D.W. Integration of microsatellite — based genetic maps for the turkey (Meleagris gallopavo). Genome, 2006, 49(10): 1308-1318 (doi: 10.1139/g06-084).
  • Smith E.J., Geng T., Long E., Pierson F.W., Sponenberg D.P., Larson C., Gogal R. Molecular analysis of the relatedness of five domesticated turkey strains. Biochemical Genetics, 2005, 43(1-2): 35-47 (doi: 10.1007/s10528-005-1065-5).
  • Фисинин В.И., Селионова М.И., Шинкаренко Л.А., Щербатова Н.Г., Кононова Л.В. Исследование микросателлитных локусов в породах индеек российской селекции. Сельскохозяйственная биология, 2017, 52(4): 739-748 (doi: 10.15389/agrobiology.2017.4.739rus).
  • Reed K.M., Chaves L.D., Rowe J.A. Twelve new turkey microsatellite loci. Poultry Science, 2002, 81(12): 1789-1791 (doi: 10.1093/ps/81.12.1789).
  • Reed K.M., Roberts M.C., Murtaugh J., Beattie C.W., Alexander L.J. Eight new dinucleotide loci in turkey (Meleagris gallopavo). Animal Genetics, 2000, 31(2): 140-157 (doi: 10.1046/j.1365-2052.2000.00571.x).
  • Peakall R., Smouse P.E. GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update. Bioinformatics, 2012, 28(19): 2537-2539 (doi: 10.1093/bioinformatics/bts460).
  • Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 (doi: 10.2307/2408641).
  • Nei M. Genetic distance between populations. American Naturalist, 1972, 106: 283-392.
  • Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164(4): 1567-1587.
  • Latch E.K., Smith E.J., Rhodes O.E. Isolation and characterization of microsatellite loci in wild and domestic turkeys (Meleagris gallopavo). Molecular Ecology Note, 2002, 2(2): 176-178 (doi: 10.1046/j.1471-8286.2002.00183.x).
  • Kusza S., Mihók S., Czeglédi L., Javor A., Arnyasi M. Testing the breeding strategy of Hungarian Bronze turkey strains for maintaining genetic diversity with microsatellites. Arch. Anim. Breed., 2011, 54(4): 419-429 (doi: 10.5194/aab-54-419-2011).
  • Шинкаренко Л.А., Терлецкий В.П., Тыщенко В.И. Генетические особенности пород индеек биоресурсной коллекции селекционно-генетического центра «СКЗОСП». Птицеводство, 2020, 9: 17-21 (doi: 10.33845/0033-3239-2020-69-9-17-21).
  • Kamara D., Gyenai K.B., Geng T., Hammade H. Microsatellite marker-based genetic analysis of relatedness between commercial and heritage turkeys (Meleagris gallopavo). Poultry Science, 2007, 86(1): 46-49 (doi: 10.1093/ps/86.1.46).
  • Knutson T.P., Chaves L.D., Hall M.K., Reed K.M. One hundred fifty-four genetic markers for the turkey (Meleagris gallopavo). Genome, 2004, 47(6): 1015-1028 (doi: 10.1139/g04-076).
  • Mock K.E., Theimer T.C., Rhodes O.E., Greenberg D.L., Keim P. Genetic variation across the historical range of the wild turkey (Meleagris gallopavo). Molecular Ecology, 2002, 11(4): 643-657 (doi: 10.1046/j.1365-294X.2002.01467.x).
  • Aslam M.L., Bastiaansen J.W.M., Elferink M.G, Megens H.J., Crooijmans R.P.M.A., Blomberg L.A., Fleischer R.C., Tassell C.P., Sonstegard T.S., Schroeder C.G., Groenen M.A.M, Long J.A. Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genomics, 2012, 13: 391-404 (doi: 10.1186/1471-2164-13-391 ).
  • Flicek P., Amode M.R., Barrell D., Beal K., Brent S., Carvalho-Silva D., Clapham P., Coates G., Fairley S., Fitzgerald S., Gil L., Gordon L., Hendrix M., Hourlier T., Johnson N., Kähäri A. K., Keefe D., Keenan S., Kinsella R., Komorowska M., Koscielny G., Kulesha E., Larsson P., Longden I., McLaren W., Muffato M., Overduin M.M.B., Pignatelli M., Pritchard B., Riat H.S., Ritchie G., Ruffier M., Schuster M.R.B., Sobral D., Tang A., Taylor T., Trevanion S., Vandrovcova J., White S.J., Wilson M., Wilder S.P., Aken B.L., Birney E., Cunningham F., Dunham I., Durbin R., Fernandez-Suarez X., Harrow J., Herrero J., Hubbard T., Parker A., Proctor G., Spudich G., Vogel J., Yates A., Zadissa A., Searle S. Ensembl 2012. Nucleic Acids Research. 2012, 40(D1): D84-D90 (doi: 10.1093/nar/gkr991).
  • Dalloul R. A., Long J.A., Zimin A.V., Aslam L., Beal K., Blomberg L. A., Bouffard P., Burt D.W., Crasta O., Crooijmans R.P.M.A., Cooper K., Coulombe R.A., De S., Delany M.E., Dodgson J.B., Dong J.J., Evans C., Frederickson K.M., Flicek P., Florea L., Folkerts O., Groenen M.A.M., Harkins T., Herrero J., Hoffmann S., Megens H.-J., Jiang A., Jong P., Kaiser P., Kim H., Kim K-W., Kim S., Langenberger D., Lee M-K., Lee T., Mane S., Marcais G., Marz M., McElroy A., Modise T., Nefedov M., Notredame C., Paton I.R., Payne W.S., Pertea G., Prickett D., Puiu D., Qioa D., Raineri E., Ruffier M., Salzberg S.L., Schatz M.C., Scheuring C., Schmidt C.J., Schroeder S., Searle S.M.J., Smith E.J., Smith J., Sonstegard T.S., Stadler P.F., Tafer H., Tu Z.J., Tassell C.P., Vilella A.J., Williams K.P., Yorke J.A., Zhang L., Zhang H.-B., Zhang X., Zhang Y., Reed K.M. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biology, 8(9): e1000475 (doi: 10.1371/journal.pbio.1000475).
Еще
Статья научная