Генные и геномные подписи доместикации

Автор: Глазко В.И.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 4 т.53, 2018 года.

Бесплатный доступ

Доместикация рассматривается как модель микроэволюции, обсуждаются проблемы и признаки доместикации у видов животных, отличающие их от близкородственных диких видов. Описываются разные уровни (геномный, генный, белковый, метаболомный, ключевые гены формирования хозяйственно ценных признаков), на которых проявляется влияние доместикация. Отмечается, что основное отличие доместицированных видов от близкородственных диких заключается в относительно повышенной изменчивости на фенотипическом (большое количество и разнообразие пород, широкие ареалы), популяционно-генетическом уровне и в функциональных группах генов. Накопленные данные позволяют предположить наличие «субгенома», повышенная изменчивость которого служит источником генетической гетерогенности доместицированных животных, необходимой для эффективного отбора по хозяйственно ценным признакам и адаптивному потенциалу. Анализ различий по SNP и CNV маркерам свидетельствует о том, что в геномных областях, где расположены маркеры, дифференцирующие эти виды, преимущественно локализованы гены, продукты которых связаны с развитием нервной и иммунной систем, а также с характеристиками продуктивности сельскохозяйственных животных...

Еще

Доместикация, подпись доместикации, микросателлиты, диспергированные повторы, эндогенные ретровирусы

Короткий адрес: https://sciup.org/142216567

IDR: 142216567   |   DOI: 10.15389/agrobiology.2018.4.659rus

Список литературы Генные и геномные подписи доместикации

  • Боголюбский С.Н. Происхождение и преобразование домашних животных. М., 1959.
  • Wang K., Wu P., Yang Q., Chen D., Zhou J., Jiang A., Ma J., Tang Q., Xiao W., Jiang Y., Zhu L., Li X., Tang G. Detection of selection signatures in Chinese Landrace and Yorkshire pigs based on genotyping-by-sequencing data. Front. Genet., 2018, 9: 119 ( ) DOI: 10.3389/fgene.2018.00119
  • Upadhyay M., da Silva V.H., Megens H.J., Visker M.H.P.W., Ajmone-Marsan P., Bâlteanu V.A., Dunner S., Garcia J.F., Ginja C., Kantanen J., Groenen M.A.M., Crooijmans R.P.M.A. Distribution and functionality of copy number variation across European cattle populations. Front. Genet., 2017, 8: 108 ( ) DOI: 10.3389/fgene.2017.00108
  • Alberto F.J., Boyer F., Orozco-terWengel P. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun., 2018, 9(1): 813 ( ) DOI: 10.1038/s41467-018-03206-y
  • Renaud G., Petersen B., Seguin-Orlando A., Bertelsen M.F., Waller A., Newton R., Paillot R., Bryant N., Vaudin M., Librado P., Orlando L. Improved de novo genomic assembly for the domestic donkey. Sci. Adv., 2018, 4(4): eaaq0392 ( ) DOI: 10.1126/sciadv.aaq0392
  • Gaunitz C., Fages A., Hanghøj K. et al. Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360(6384): 111-114 ( ) DOI: 10.1126/science.aao3297
  • Librado P., Gamba C., Gaunitz C. et al. Ancient genomic changes associated with domestication of the horse. Science, 2017, 356(6336): 442-445 ( ) DOI: 10.1126/science.aam5298
  • Rubin C.J., Zody M.C., Eriksson J., Meadows J.R., Sherwood E., Webster M.T., Jiang L., Ingman M., Sharpe T., Ka S., Hallböök F., Besnier F., Carlborg O., Bed’hom B., Tixier-Boichard M., Jensen P., Siegel P., Lindblad-Toh K., Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464(7288): 587-591 ( ) DOI: 10.1038/nature08832
  • Frantz L.A., Schraiber J.G., Madsen O., Megens H.J., Cagan A., Bosse M. Paudel Y., Crooijmans R.P., Larson G., Groenen M.A. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet., 2015, 47(10): 1141-1148 ( ) DOI: 10.1038/ng.3394
  • Paudel Y., Madsen O., Megens H.J., Frantz L.A., Bosse M., Bastiaansen J.W., Crooijmans R.P., Groenen M.A. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics, 2013, 14: 449 ( ) DOI: 10.1186/1471-2164-14-449
  • Park S.D., Magee D.A,. McGettigan P.A., Teasdale M.D., Edwards C.J., Lohan A.J., Murphy A., Braud M., Donoghue M.T., Liu Y., Chamberlain A.T., Rue-Albrecht K., Schroeder S., Spillane C., Tai S., Bradley D.G., Sonstegard T.S., Loftus B.J., MacHugh D.E. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol., 2015, 16: 234 ( ) DOI: 10.1186/s13059-015-0790-2
  • Zamani W., Ghasempouri S.M., Rezaei H.R., Naderi S., Hesari A.R.E., Ouhrouch A. Comparing polymorphism of 86 candidate genes putatively involved in domestication of sheep, between wild and domestic Iranian sheep. Meta Gene, 2018, 17: 223-231 ( ) DOI: 10.1016/j.mgene.2018.06.015
  • Der Sarkissian C., Ermini L., Schubert M. et al. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr. Biol., 2015, 25(19): 2577-2583 ( ) DOI: 10.1016/j.cub.2015.08.032
  • Librado P., Fages A., Gaunitz C., Leonardi M., Wagner S., Khan N., Hanghøj K., Alquraishi S.A., Alfarhan A.H., Al-Rasheid K.A., Der Sarkissian C., Schubert M., Orlando L. The evolutionary origin and genetic makeup of domestic horses. Genetics, 2016, 204(2): 423-434 ( ) DOI: 10.1534/genetics.116.194860
  • Wutke S., Sandoval-Castellanos E., Benecke N., Döhle H.J., Friederich S., Gonzalez J., Hofreiter M., Lõugas L., Magnell O., Malaspinas A.S., Morales-Muñiz A., Orlando L., Reissmann M., Trinks A., Ludwig A. Decline of genetic diversity in ancient domestic stallions in Europe. Sci. Adv., 2018, 4(4): eaap9691 ( ) DOI: 10.1126/sciadv.aap9691
  • Carneiro M., Rubin C.J., Di Palma F. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345(6200): 1074-1079 ( ) DOI: 10.1126/science.1253714
  • Irving-Pease E.K., Frantz L.A.F., Sykes N., Callou C., Larson G. Rabbits and the specious origins of domestication. Trends Ecol. Evol., 2018, 33(3): 149-152 ( ) DOI: 10.1016/j.tree.2017.12.009
  • Glazko V.I., Andreichenko I.N., Kovalchuk S.N., Glazko T.T., Kosovsky G.Yu. Candidate genes for control of cattle milk production traits. Russian Agricultural Sciences, 2016, 42(6): 458-464 ( ) DOI: 10.3103/S1068367416060082
  • Glazko V., Zybaylov B., Glazko T. Domestication and genome evolution. International Journal of Genetics and Genomics, 2014, 2(4): 47-56 ( ) DOI: 10.11648/j.ijgg.20140204.11
  • Msalya G., Kim E.S., Laisser E.L., Kipanyula M.J., Karimuribo E.D., Kusiluka L.J., Chenyambuga S.W., Rothschild M.F. Determination of genetic structure and signatures of selection in three strains of Tanzania shorthorn zebu, boran and friesian cattle by genome-wide SNP analyses. PLoS ONE, 2017, 12(1): e0171088 ( ) DOI: 10.1371/journal.pone.0171088
  • Upadhyay M.R., Chen W., Lenstra J.A., Goderie C.R., MacHugh D.E., Park S.D., Magee D.A., Matassino D., Ciani F., Megens H.J., van Arendonk J.A., Groenen M.A., European Cattle Genetic Diversity Consortium; RPMA Crooijmans. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity (Edinb), 2017, 118(2): 169-176 ( ) DOI: 10.1038/hdy.2016.79
  • Khaldi N., Shields D.C. Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species. Biology Direct, 2011, 6(1): 40-49 ( ) DOI: 10.1186/1745-6150-6-40
  • Strömqvist M., Falk P., Bergström S., Hansson L., Lönnerdal B., Normark S., Hernell O. Human milk kappa-casein and inhibition of Helicobacter pylori adhesion to human gastric mucosa. J. Pediatr. Gastroenterol. Nutr., 1995, 21(3), 288-296.
  • Glazko V.I. An attempt at understanding the genetic basis of domestication. Animal Science Papers and Reports, 2003, 21(2): 109-120.
  • Glazko V.I., Glazko T.T. Domestication and N.I. Vavilov’s law of homologous series in hereditary variability. Russian Agricultural Sciences, 2013, 39(1): 8-12 ( ) DOI: 10.3103/S1068367413010072
  • Glazko V., Zybaylov B., Glazko T. Domestication and genome evolution. International Journal of Genetics and Genomics, 2014, 2(4): 47-56 ( ) DOI: 10.11648/j.ijgg.20140204.11
  • Glazko V., Zybailov B., Glazko T. Asking the right question about the genetic basis of domestication: what is the source of genetic diversity of domesticated species? Adv. Genet. Eng., 2015, 4: 2 ( ) DOI: 10.4172/2169-0111.1000125
  • Aliloo H., Pryce J.E., González-Recio O., Cocks B.G., Hayes B.J., Validation of markers with non-additive effects on milk yield and fertility in Holstein and Jersey cows. BMC Genet., 2015, 16: 89 ( ) DOI: 10.1186/s12863-015-0241-9
  • Flori L., Fritz S., Jaffrézic F., Boussaha M., Gut I., Heath S., Foulley J.L., Gautier M. The genome response to artificial selection: a case study in dairy cattle. PLoS ONE, 2009, 4(8): e6595 ( ) DOI: 10.1371/journal.pone.0006595
  • Zhao F., McParland S., Kearney F., Du L., Berry D.P. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet. Sel. Evol., 2015, 47: 49 ( ) DOI: 10.1186/s12711-015-0127-3
  • Feng X., Jiang J., Padhi A., Ning C., Fu J., Wang A., Mrode R., Liu J.-F. Characterization of genome-wide segmental duplications reveals a common genomic feature of association with immunity among domestic animals. BMC Genomics, 2017, 18: 293 ( ) DOI: 10.1186/s12864-017-3690-x
  • Nevo E. Evolution of genome-phenome diversity under environmental stress. PNAS USA, 2001, 98(11): 6233-6240 ( ) DOI: 10.1073/pnas.101109298
  • Nosil P., Funk D.J., Ortiz-Barrientos D. Divergent selection and heterogeneous genomic divergence. Mol. Ecol., 2009, 18: 375-402 ( ) DOI: 10.1111/j.1365-294X.2008.03946.x
  • Owuor E.D., Fahima T., Beharav A., Korol A., Nevo E. RAPD divergence caused by microsite edaphic selection in wild barley. Genetica, 1999, 105(2): 177-192 ( ) DOI: 10.1023/A:1003781711908
  • Bailey E., Lear T.L. Comparison of Thoroughbred and Arabian horses using RAPD markers. Animal Genetics, 1994, 25(Suppl. 1): 105-108 ( ) DOI: 10.1111/j.1365-2052.1994.tb00414.x
  • Glazko V.I., Zelenaia L.B. Differentiation of domestic horse and Przewalski’s horse using various DNA sequences. Genetika, 1998, 34(7): 996-999.
  • Glazko V.I., Dyman’ T.N., Tarasiuk S.I., Dubin A.V. The polymorphism of proteins, RAPD-PCR and ISSR-PCR markers in European and American bison and cattle. Cytol. Genet., 1999, 33(6): 30-39.
  • Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20(2): 176-183 ( ) DOI: 10.1006/geno.1994.1151
  • Rychlik W., Spencer W.J., Rhoads R.E. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res., 1990, 18(21): 6409-6412
  • Shiue Y.L., Bickel L.A., Caetano A.R., Millon L.V., Clark R.S., Eggleston M.L., Michelmore R., Bailey E., Guérin G., Godard S., Mickelson J.R., Valberg S.J., Murray J.D., Bowling A.T. A synteny map of the horse genome comprised of 240 microsatellite and RAPD markers. Animal Genetics, 1999, 30(1): 1-9 ( ) DOI: 10.1046/j.1365-2052.1999.00377.x
  • Sulima Iu.Iu., Kalendar’ R.N., Sivolap Iu.M. The mapping of the barley genome by RAPD analysis using double haploid strains. Cytol. Genet., 2000, 34(4): 41-49.
  • Owuor E.D., Fahima T., Beharav A., Korol A., Nevo E. RAPD divergence caused by microsite edaphic selection in wild barley. Genetica, 1999, 105(2):177-192.
  • Kalendar R., Schulman A.H. Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Mol. Biol., 2014, 1115: 233-255 ( ) DOI: 10.1007/978-1-62703-767-9_12
  • Tomás D., Rodrigues J., Varela A., Veloso M.M., Viegas W., Silva M. Use of repetitive sequences for molecular and cytogenetic characterization of Avena species from Portugal. Int. J. Mol. Sci., 2016, 17(2): E203 ( ) DOI: 10.3390/ijms17020203
  • Shirasu K., Schulman A.H., Lahaye T., Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res., 2000, 10(7): 908-915 ( ) DOI: 10.1101/gr.10.7.908
  • Glazko V.I., Gladyr E.A., Feofilov A.V., Bardukov N.V., Glazko T.T. ISSR-PCR markers and mobile genetic elements in genomes of agricultural mammal species. Agricultural Biology, 2013, 2: 71-76 ( ) DOI: 10.15389/agrobiology.2013.2.71eng
  • The Bovine Genome Sequencing and Analysis Consortium, Elsik C.G., Tellam R.L., Worley K.C. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 2009, 324(5926) 522-528 ( ) DOI: 10.1126/science.1169588
  • Garcia-Etxebarria K., Jugo B.M. Evolutionary history of bovine endogenous retroviruses in the Bovidae family. BMC Evolutionary Biology, 2013, 13: 256 ( ) DOI: 10.1186/1471-2148-13-256
  • Garcia-Etxebarria K., Sistiaga-Poveda M., Jugo B.M. Endogenous retroviruses in domestic animals. Current Genomics, 2014, 15(4): 256-265 ( ) DOI: 10.2174/1389202915666140520003503
  • Zhang Y., Maksakova I.A., Gagnier L., van de Lagemaat L.N., Mager D.L. Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet., 2008, 4(2): e1000007 ( ) DOI: 10.1371/journal.pgen.1000007
  • Nellåker C., Keane T.M., Yalcin B., Wong K., Agam A., Belgard T.G., Flint J., Adams D.J., Frankel W.N., Ponting C.P. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol., 2012, 13(6): R45 ( ) DOI: 10.1186/gb-2012-13-6-r45
  • Mei L., Ding X., Tsang S.Y., Pun F.W., Ng S.K., Yang J., Zhao C., Li D., Wan W., Yu C.H., Tan T.C., Poon W.S., Leung G.K., Ng H.K., Zhang L., Xue H. AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome. BMC Genomics, 2011, 12: 564 ( ) DOI: 10.1186/1471-2164-12-564
  • Yang J.F., Ding X.F., Chen L., Mat W.K., Xu M.Z., Chen J.F., Wang J.M., Xu L., Poon W.S., Kwong A., Leung G.K., Tan T.C., Yu C.H., Ke Y.B., Xu X.Y., Ke X.Y., Ma R.C., Chan J.C., Wan W.Q., Zhang L.W., Kumar Y., Tsang S.Y., Li S., Wang H.Y., Xue H. Copy number variation analysis based on AluScan sequences. Journal of Clinical Bioinformatics, 2014, 4(1): 15 ( ) DOI: 10.1186/s13336-014-0015-z
  • Garcia-Etxebarria K., Jugo B.M. Genome-wide detection and characterization of endogenous retroviruses in Bos taurus. J. Virol., 2010, 84(20): 10852-10862 ( ) DOI: 10.1128/JVI.00106-10
  • Van der Kuyl A.C. Characterization of a full-length endogenous beta-retrovirus, EqERV-Beta1, in the genome of the horse (Equus caballus). Viruses, 2011, 3(6): 620-628 ( ) DOI: 10.3390/v3060620
  • Garcia-Etxebarria K., Jugo B.M. Genomic environment and digital expression of bovine endogenous retroviruses. Gene, 2014, 548(1): 14-21 ( ) DOI: 10.1016/j.gene.2014.06.048
  • Oliveira S.G., Bao W., Martins C., Jurka J. Horizontal transfers of Mariner transposons between mammals and insects. Mob DNA, 2012, 3(1): 14 ( ) DOI: 10.1186/1759-8753-3-14
  • Walsha A.M., Kortschaka R.D., Gardnerb M.G., Bertozzi T., Adelson D.L. Widespread horizontal transfer of retrotransposons. PNAS USA, 2013, 110(3): 1012-1016 ( ) DOI: 10.1073/pnas.1205856110
  • Chalopin D., Naville M., Plard F., Galiana D., Volff J.N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in Vertebrates. Genome Biol. Evol., 2015, 7(2): 567-580 ( ) DOI: 10.1093/gbe/evv005
  • Koonin E.V. Viruses and mobile elements as drivers of evolutionary transitions. Phil. Trans. R. Soc. B, 2016, 371(1701): 20150442 ( ) DOI: 10.1098/rstb.2015.0442
  • Ahmed M., Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comp. Funct. Genom., 2012, 2012: Article ID 947089 ( ) DOI: 10.1155/2012/947089
  • Behura S.K., Severson D.W. Association of microsatellite pairs with segmental duplications in insect genomes. BMC Genomics, 2013, 14: 907 ( ) DOI: 10.1186/1471-2164-14-907
  • Sharma A., Wolfgruber T.K., Presting G.G. Tandem repeats derived from centromeric retrotransposons. BMC Genomics, 2013, 14: 142 ( ) DOI: 10.1186/1471-2164-14-142
  • Bardukov N.V., Feofilov A.V., Glazko T.T., Glazko V.I. ISSR-PCR markers and mobile genetic elements in horse (Equus caballus) genome. Agricultural Biology, 2014, 4: 42-57 ( ) DOI: 10.15389/agrobiology.2014.4.42eng
  • Glazko V., Kosovsky G., Glazko T. High density of transposable elements in sequenced sequences in cattle genomes, associated with AGC microsatellites. Global Advanced Research Journal of Agricultural Science, 2018, 7(2): 034-045.
  • Дарвин Ч. Изменения домашних животных и культурных растений. Т. 4. М.-Л., 1951.
  • Zeder M.A. Core questions in domestication research. PNAS USA, 2015, 112(11): 3191-3198 ( ) DOI: 10.1073/pnas.1501711112
  • Ibeagha-Awemu E.M., Zhao X. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front. Genet., 2015, 6: 302 ( ) DOI: 10.3389/fgene.2015.00302
  • Te Pas M.F.W., Madsen J., Calus M.P.L., Smits M.A. The importance of endophenotypes to evaluate the relationship between genotype and external phenotype. Int. J. Mol. Sci., 2017, 18(2): 472 ( ) DOI: 10.3390/ijms18020472
Еще
Статья обзорная