Hyperbolic-logarithmic model of nonlinear electrodynamics

Бесплатный доступ

In this paper we consider a new model of nonlinear electrodynamics - "Hyperbolic-logarithmic". This model contain a three parameters and describe by following Lagrangian: ℒ = -ℱ - 𝛽 𝑎𝑟𝑡ℎ(𝛽ℱ) - 2𝛽 [ln(1 + 𝛽ℱ) + ln(1-𝛽ℱ)], where ℱ = 1 4𝐹𝑖𝑘𝐹𝑖𝑘. We show, that in this model dual symmetry is broken. Also we proved that the electric field of a point-like charge becomes non-singular in this framework, static electric energy of this charge is finite. We calculate a theory parameters values guided by electron parameters and Abraham - Lorentz idea about a pure electromagnetic nature of electron mass. We find the canonical and symmetrical Belifante energy momentum tensors.

Еще

Nonlinear electrodynamics, energy-momentum tensor, point-like charge energy

Короткий адрес: https://sciup.org/142237732

IDR: 142237732   |   DOI: 10.17238/issn2226-8812.2023.1.41-45

Список литературы Hyperbolic-logarithmic model of nonlinear electrodynamics

  • Heisenberg W., Euler H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Physik, 1936, 98, pp. 714-732.
  • Corda C., H.J. Mosquera Cuesta, Inflation from R2 gravity: A new approach using nonlinear electrodynamics. Astropart. Phys., 2011, 34, pp. 587-590.
  • Lundin J., Brodin G., Marklund M. Short wavelength quantum electrodynamical correction to cold plasma-wave propagation. Phys. Plasmas, 2006, 13, 102102.
  • Akamatsu Y., Yamamoto N. Chiral Plasma Instabilities. Phys. Rev. Lett., 2013, 111, 052002.
  • Born M., Infeld L. Foundations of the new field theory. Proc. Roy. Soc. Lond. A, 1934, 144, pp. 425-451.
  • Kruglov S.I. Nonlinear arcsin-electrodynamics. Ann. Phys. (Berlin), 2015, 527, pp. 397-401.
  • Kruglov S.I. On generalized ModMax model of nonlinear electrodynamics. Phys.Lett. B, 2021, 822, 136633.
  • Gibbons G.W., Rasheed D.A. Electric-magnetic duality rotations in non-linear electrodynamics. Nucl. Phys. B, 1995, 454, pp. 185-206.
  • Coleman S., Jackiw R. Why dilatation generators do not generate dilatations. Ann. Phys., 1971, 67, pp. 552-598.
  • Born M., Infeld L. Electromagnetic mass. Nature, 1933, 132, p. 970.
Статья научная