Increasing unions of Stein spaces with singularities
Автор: Alaoui Youssef
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.23, 2021 года.
Бесплатный доступ
We show that if X is a Stein space and, if Ω⊂X is exhaustable by a sequence Ω1⊂Ω2⊂…⊂Ωn⊂… of open Stein subsets of X, then Ω is Stein. This generalizes a well-known result of Behnke and Stein which is obtained for X=Cn and solves the union problem, one of the most classical questions in Complex Analytic Geometry. When X has dimension 2, we prove that the same result follows if we assume only that Ω⊂⊂X is a domain of holomorphy in a Stein normal space. It is known, however, that if X is an arbitrary complex space which is exhaustable by an increasing sequence of open Stein subsets X1⊂X2⊂⋯⊂Xn⊂…, it does not follow in general that X is holomorphically-convex or holomorphically-separate (even if X has no singularities). One can even obtain 2-dimensional complex manifolds on which all holomorphic functions are constant.
Stein spaces, q-complete spaces, q-convex functions, strictly plurisubharmonic functions
Короткий адрес: https://sciup.org/143174080
IDR: 143174080 | DOI: 10.46698/j5441-9333-1674-x
Список литературы Increasing unions of Stein spaces with singularities
- Behnke, H. and Stein, K. Konvergente Folgen Von Regularitatsbereichen and die Meromorphiekonvexitat, Mathematische Annalen, 1939, vol.116, pp. 204-216. DOI: 10.1007/BF01597355
- Markoe, A. Runge Families and Inductive Limits of Stein Spaces, Annales de l'Institut Fourier, 1977, vol. 27, no. 3, pp. 117-127. DOI: 10.5802/aif.663
- Silva, A. Rungescher Satz and a Condition for Steiness for the Limit of an Increasing Sequence of Stein Spaces, Annales de l'Institut Fourier, 1978, vol. 28, no. 2, pp. 187-200. DOI: 10.5802/aif.695
- Fornaess, J. E. An Increasing Sequence of Stein Manifolds whose Limit is not Stein, Mathematische Annalen, 1976, vol. 223, pp. 275-277. DOI: 10.1007/BF01360958
- Fornaess, J. E. 2-Dimensional Counterexamples to Generalizations of the Levi Problem, Mathematische Annalen, 1977, vol. 230, pp. 169-173. DOI: 10.1007/BF01370661
- Fornaess, J. E. and Stout, E. L. Polydiscs in Complex Manifolds, Mathematische Annalen, 1977, vol. 227, pp. 145-153. DOI: 10.1007/BF01350191
- Coltoiu, M. Remarques sur les Reunions Croissantes d'Ouverts de Stein, Comptes Rendus de l'Academie des Sciences. Ser. I, 1988, vol. 307, pp. 91-94.
- Vajaitu, V. q-Completeness and q-Concavity of the Union of Open Subspaces, Mathematische Zeitschrift, 1996, vol. 221, pp. 217-229. DOI: 10.1007/PL00022735
- Andreotti, A. and Narasimhan, R. Oka's Heftungslemma and the Levi Problem for Complex Spaces, Transactions of the American Mathematical Society, 1964, vol. 111, no. 2, pp. 345-366. DOI: 10.1090/S0002-9947-1964-0159961-3
- Simha, R. R. On the Complement of a Curve on a Stein Space of Dimension Two, Mathematische Zeitschrift, 1963, vol. 82, pp. 63-66. DOI: 10.1007/BF01112823