Информационные технологии обучения математике в школах США

Автор: Чошанов Мурат Аширович

Журнал: Образовательные технологии и общество @journal-ifets

Рубрика: Sixth thematic workshop on digital library architectures

Статья в выпуске: 4 т.9, 2006 года.

Бесплатный доступ

Среди наиболее распространенных информационных технологий, используемых при обучении математике в школах США, можно выделить: −Калькуляторы (традиционные и графические). −Мультимедийные программные средства. −Образовательные сайты в Интернете. −Компьютерные конференции и дистанционное обучение. В данной статье мы остановимся более подробно на возможностях графического калькулятора как мощного визуального средства обучения математике. Что касается мультимедийных средств и образовательных сайтов, используемых при обучении школьной математики как американскими учителями, так и школьниками, то здесь наблюдается полнейший «разброд» в хорошем смысле этого слова. Некоторые образовательные сайты содержат также каналы для компьютерных форумов и конференций. Относительно школьного дистанционного обучения надо признать, что в настоящее время оно развито гораздо слабее, чем в высшей школе. Поэтому данное направление мы лишь только обозначим как одну из ближайших перспектив развития новых информационных технологий обучения математике в школах США.

Еще

Короткий адрес: https://sciup.org/14062110

IDR: 14062110

Текст научной статьи Информационные технологии обучения математике в школах США

Среди наиболее распространенных информационных технологий, используемых при обучении математике в школах США, можно выделить:

  • -    Калькуляторы (традиционные и графические).

  • -    Мультимедийные программные средства.

  • -    Образовательные сайты в Интернете.

  • -    Компьютерные конференции и дистанционное обучение.

В данной статье мы остановимся более подробно на возможностях графического калькулятора как мощного визуального средства обучения математике. Что касается мультимедийных средств и образовательных сайтов, используемых при обучении школьной математики как американскими учителями, так и школьниками, то здесь наблюдается полнейший «разброд» в хорошем смысле этого слова. Некоторые образовательные сайты содержат также каналы для компьютерных форумов и конференций. Относительно школьного дистанционного обучения надо признать, что в настоящее время оно развито гораздо слабее, чем в высшей школе. Поэтому данное направление мы лишь только обозначим как одну из ближайших перспектив развития новых информационных технологий обучения математике в школах США.

Графический калькулятор стал широко внедряться в практику американской школы в 80-е годы с появлением модифицированных марок калькуляторов фирмы «Texas Instruments” (TI-81, TI-82) с графическими возможностями. Сейчас это направление вылилось в мощное движение учителей математики США за повышение квалификации в использовании графических калькуляторов и мини-компьютерных лабораторий при обучении школьной математики (“Teachers Teaching with Technology”). Профессор Берт Уэйтс, мой хороший знакомый и коллега из Государственного университета штата Огайо, - основатель этого движения, так описывает преимущества графического калькулятора перед прочими компьютерными средствами:

  • -    Во-первых, графические калькуляторы - компактны, их можно носить с собой в кармане пиджака или брюк. Учитывая тот факт, что они по графическим возможностям ничем не уступают самым мощным педагогическим программным средствам, используемым в обычных компьютерах, становится очевидной их практичность как для учителей, так и учащихся. Их можно приносить с собой в класс, с ними можно выполнять домашние задания, брать их с собой в библиотеку и т.д.

  • -    Во-вторых, они намного (на порядок) дешевле компьютеров, хотя по сути своей и являются карманными компьютерами. Поэтому они более доступны для широкого круга пользователей, особенно для школьников из экономически-неблагополучных семей, которые не могут позволить себе купить компьютер.

  • -    В-третьих, графические калькуляторы специально ориентированны для изучения математики, в особенности начал анализа, стастистики и геометрии. В последнее время стали появляться новые модели графических

калькуляторов (TI-89) с системами компьютерной алгебры, которые позволяют решать многие алгебраические задачи.

  • -    Наконец, графические калькуляторы могут легко подключаться к обычным компьютерам, использоваться в естественно-математических экспериментах с мини-компьютерными лабораториями и другими технологическим новшествами. Иными словами, они достаточно органично вписываются в семью новых информационных технологий, являясь далеко не тупиковым ее направлением.

Графический калькулятор имеет незаменимые возможности при обучении школьной математике: он позволяет быстро строить графики элементарных функций, легко применять методы преобразования графиков функций, исследовать общие свойства какого-либо класса элементарных функций, эффектитвно использовать графический метод решения уравнений, решать задачи оптимизации, вычислять производные функций в данной точке, находить определенные интегралы (а графические калькуляторы с системами компьютерной алгебры могут вычислять производные в общем виде и находить неопределенные интегралы), интегрировать различные разделы школьной математики (алгебру, геометрию, начала анализа, статистику), а также реализовывать межпредметные связи (математики с физикой, химией и другими дисциплинами) и многое другое. В то же самое время, графический калькулятор является эффективным средством экономии учебного времени: каждый учитель математики знает сколько времени учащиеся затрачивают на построение графиков элементарных функций «от руки», особенно – тригонометрических.

Каковы основные возможности графических калькуляторов?

Во-первых, в отличие от традиционных калькуляторов, графический калькулятор имеет небольшой дисплей (экран), на котором можно иллюстрировать графики функций, кривые статистических распределений, числовые таблицы, матрицы и т.д.

Во-вторых, графический калькулятор имеет достаточную оперативную и обычную память (на примере модели TI-83Plus), что позволяет записывать и хранить в памяти калькулятора одновременно до 10 программ-приложений.

В-третьих, при помощи специального кабеля (Graph Link) графический калькулятор легко совмещается с компьютером, что позволяет перебрасывать информацию (как текстовую, так и графическую) с калькулятора на компьютер и обратно. Он также легко соединяется с другими калькуляторами, образуя рабочую сеть графических калькуляторов, что позволяет успешно осуществлять контроль учебнопознавательной деятельности учащихся при работе с графическими калькуляторами в классной лаборатории.

Графический калькулятор позволяет осуществлять следующие математические процедуры:

  • -    Функционально-графическое моделирование (уравнения, графики, комбинированное графическое и табличное представление функций, ...)

  • -    Числовые множества (операции над действительными и комплексными числами) и системы координат (прямоугольная и полярная)

  • -    Решение алгебраических уравнений (традиционным и графическим методом)

  • -    Исследование функций (нахождение максимумов и минимумов функций, вычисление производных и определенных интегралов)

  • -    Статистические распределения (числовое и графическое представление статистической информации, кривые статистических распредлений, проверка гипотез, доверительные интервалы, ...)

  • -    Финансовый анализ (простые и сложные проценты, основные финансовые зависимости и т.д.)

  • -    Матричное исчисление (операции над матрицами, вычисление определителей,...)

  • -    И т.д.

Каждый из приведенных пунктов содержит перечень более специальных возможностей применения графического калькулятора. Так, например, функциональнографическое моделирование включает в себя следующие моменты:

  • -    Распознавание функций по их графикам, а также распознавание графиков по виду заданной функции. Это дает возможность учащимся наглядно соотносить классы функций с их типовыми графиками, например, квадратичные функции – с параболой, кубические функции - с различными типами кубической параболы, рациональные функции 4-й степени – с их соответствующими графическими образами и т.д. Это возможно благодаря тому, что графический калькулятор в принципе может построить график любой элементарной функции, за исключением конечно же тех, которые не могут быть представлены графически, как например, функция Дирихле и т.п.

  • -    Построение графиков функций в декартовой и прямоугольной системах координат.

  • -    Преобразование графиков функций, простейшие операции над графиками функций, включая композицию функций, построение обратной функции и т.д.

  • -    Шкалирование графиков функций, а также «трасирование» функции (прослеживание движения точки на графике функции).

  • -    Эскизирование сложных графиков (в особенности, графиков дробнорациональных функций).

  • -    Графическое решение уравнений и неравенств.

Некоторые модификации графических калькуляторов, например модель TI-92, позволяет работать с достаточно крупной по объему памяти и мощными графическим возможностям геометрической программой Cabri. Эта программа (также как и педагогическое программное средство Geometer’s Sketchpad, пользующееся необычайной популярностью среди американских учителей математики) позволяет изучать школьную геометрию в динамике, и что особенно важно - наглядно и доступно для учащихся с различным уровнем обученности.

Одним из передовых технологических достижений в области школьной математики США, да и не только математики, но и других дисциплин, является разработка учебно-математических пакетов – комплексов, включающих в себя учебную программу, учебник, методическое пособие, решебник, дидактические средства, раздаточные материалы, аудиовизуальные средства, педагогические программные продукты и т.д. К сожалению, у нас в России мы предпринимаем лишь только первые шаги в этом направлении. Поэтому, нам представляется, что опыт разработки учебнометодических пакетов в США заслуживает внимания и подробного изучения.

Главной отличительной характеристикой учебно-методических пакетов по сравнению с другими дидактическими средствами является – целостность. Целостность с точки зрения основной идеи, положенной в основу пакета; целостность с точки зрения охвата основных элементов методической системы (цели, содержания, процесса, средств, оценки); целостность с точки зрения «командного» подхода (team approach – подход, предполагающий работу в команде единомышленников) к проектированию пакетов.

У нас в России традиционно сложилось так, что учебные программы составляются одной группой лиц с опорой на собственное понимание концепции школьного математического образования, учебники и учебные пособия пишутся другой группой авторов, иногда на принципиально иной концептуальной основе, методические пособия и дидактические средства разрабатываются третьей группой лиц, и т.д. О какой целостности и работе в команде здесь может идти речь?!

Рассмотрим технологию проектирования учебно-методических пакетов на примере комплекса «Алгебра-1» для средней ступени (middle school) школы США. Пакет разработан командой авторов, среди которых: председатели методических объединений нескольких школ, методисты-математики окружных отделов образования, учителя математики, профессора-математики из университетов, специалисты из смежных областей (науки, технологии), специалисты по компьютерной верстке и графическому дизайну и т.д. Словом, в команде представлены специалисты разного «калибра», что и позволяет им подойти к проблеме разработки учебно-методического пакета всестронне и целостно.

Курс «Алгебра-1» охватывает разделы рациональных чисел, линейных уравнений и неравенств, многочленов, рациональных выражений, функций и графиков (линейных и квадратичных), статистики и вероятностей, тригонометрии (основные тождества).

Пакет состоит из следующих основных элементов:

  • 1.    учебная программа (тематический план);

  • 2.    учебное пособие для школьника (учебник);

  • 3.    методическое пособие для учителя (методика);

  • 4.    сборник задач и упражнений;

  • 5.    методические рекомендации для работы со слабыми учащимися;

  • 6.    методические рекомендации для углубленного изучения алгебры;

  • 7.    методическое руководство по оценке знаний;

  • 8.    методическое руководство по использованию графического калькулятора при изучении алгебры;

  • 9.    методическое руководство по организации дидактических игр и использованию раздаточных материалов;

  • 10.    руководство по лабораторно-графическим работам;

  • 11.    комплект кодопозитивов;

  • 12.    сборник прикладных задач и дидактических материалов;

  • 13.    раздаточные материалы по индивидуальным домашним проектам;

  • 14.    сборник тестов (в текстовом формате и на магнитном носителе);

  • 15.    решебник (к учебному пособию);

  • 16.    планы-конспекты уроков.

Основная методическая концепция данного пакета – прикладная направленность курса алгебры. Учебная программа и учебное пособие составлены в четком соответствии с данной концепцией и национальными стандартами школьной математики.

Методическое пособие содержит систему работы учителя математики с данным пакетом. Прежде всего, - технологию реализации основной концепции при подготовке, анализе и проведении урока математики. Для рассматриваемого пакета эта технология состоит из 6 основных этапов.

  • 1.    Вводный этап, как правило, содержит два момента. Первый момент включает 5-минутную проверку (фронтальный или индивидуальный тестовый опрос) материала изученного на предыдущем уроке. Второй момент – мотивационный, направленный на подготовку учащихся к изучению нового материала при помощи постановки прикладных задач и практических проблемных ситуаций.

  • 2.    Основной этап – собственно изучение нового материала, предполагающее активное вовлечение учащихся в процесс приобретению нового знания посредством приемов и методов кооперативного обучения (обучения в малых группах), проведения лабораторно-графических работ, использования технических средств и наглядных учебных материалов.

  • 3.    Этап применения представлен в виде серии упражнений по отработке полученных знаний и умений.

  • 4.    Этап оценки состоит из дифференцированных заданий по проверке изученного материала, а также анализа типичных ошибок и комментариев учителя по степени достижений целей урока. На этом же этапе учащиеся получают разноуровневые домашние задания (для базового, среднего и продвинутого уровней).

  • 5.    Этап переобучения. Независимо от того, насколько хорошо был подготовлен урок, всегда найдутся несколько учащихся, которые не всё поняли с первого раза. Именно для такой категории учащихся планируется данный этап

  • 6.    Этап углубления, также как и этап переобучения, направлен на индивидуализацию обучения математике и предназначен для работы с учащимися, проявляющими особый интерес к изученному материалу.

переобучения с соответствующим резервом времени после основных занятий. Это - очень важный этап с точки зрения индивидуализации обучения. Не соблюдение этого этапа, по мнению разработчиков данного пакета, резко снижает эффективность обучения математике.

Вполне очевидно, что школьный учитель, имеющий в распоряжении такой учебно-методический пакет, построенный на конкретной методической идее или подходе, как максимум имеет достаточно полное представление о том, как реализовывать данную идею в учебном процессе, и как минимум - огромную экономию времени: поскольку в пакете представлены практически все элементы учебного процесса: содержание, методы обучения, средства, раздаточные материалы (вплоть до кодопозитивов) и система оценки. В то же самое время, учебно-методические пакеты имеют один очень важный недостаток: учитель, привыкший работать с пакетами, превращается в простого исполнителя и реализатора чужой идеи. Это заметно снижает творческий педагогический потенциал американского учителя.

Статья научная