Investigation of different topologies of neural networks for data assimilation

Бесплатный доступ

Neural networks have emerged as a novel scheme for a data assimilation process. Neural network techniques are applied for data assimilation in the Lorenz chaotic system. A radial basis function and a multilayer perceptron neural networks are trained employing 1000, 2000, and 4000 examples. Three different observation intervals are used: 0.01, 0.06 and 0.1 s. The performance of the data assimilation technique is investigated for different architectures of these neural networks. The best results of the MP-NN for sampled observation at 0.06 and 0.01 s were obtained using 3 neurons, with hyperbolic-tangent in the output layer. For RBF-NN, the best

Еще

Data assimilation, neural network

Короткий адрес: https://sciup.org/147160551

IDR: 147160551   |   DOI: 10.14529/cmse140407

Список литературы Investigation of different topologies of neural networks for data assimilation

  • Zannetti, P. Air Pollution Modeling, Computational Mechanics Publications, UK, 1990.
  • Daley, R. Atmospheric Data Analysis, Cambridge University Press, Cambridge, 1991.
  • Bennet, A. F. Inverse Methods in Physical Oceanography, Cambridge University Press, 1992.
  • Nowosad, A. G. Data Assimilation Using an Adaptative Kalman Filter and Laplace Transform/A. G. Nowosad, A. Rios Neto, H.F. de Campos Velho//Hybrid Methods in Engineering. -2000a. -Vol. 2.-P. 291-310.
  • Haykin, S. Neural Networks: A Comprehensive Foundation. Macmillan, New York.
  • Lorenz, E. Deterministic Nonperiodic Flow/E. Lorenz//Journal of Atmospheric Sciences. -1963. -Vol. 20 -P. 130-141.
  • Girosi, F. Networks and the best approximation property/F. Girosi,T. Poggio//Biological Cibernetic. -1990. -Vol. 45 -P. 169-176. DOI: DOI: 10.1007/BF00195855
  • Jazwinski, A. Stochastic Processes and Filtering Theory, Academic Press, New York and London, 1970.
Статья научная