Использование нейронных сетей глубокого обучения для классификации токсичных комментариев в социальных сетях

Бесплатный доступ

Целью этого исследования было изучение использования искусственных нейронных сетей глубокого обучения для классификации токсичных комментариев в социальных. Распространенность токсичных взаимодействий на этих платформах достигла небывало высокого уровня, что привело к снижению уровня цифровой цивилизованности. Модераторы этих платформ вынуждены тратить большое количество времени и сил, чтобы контролировать негатив в комментариях. В исследовании рассматриваются различные алгоритмы и методы построения искусственных нейронных сетей, а также сравнивается производительность трех выбранных моделей, чтобы определить наиболее эффективную для решения этой задачи. Комментарии со страницы обсуждения в Википедии выполняют роль данных для построения моделей классификации. Исследование включает в себя обзор методов, используемых для достижения целевых результатов, с использованием Python и его библиотек. Оно также охватывает технические аспекты, такие как процесс построения, обучения и оценки моделей искусственных нейронных сетей. Была рассмотрена ценная информация о необходимых теоретических основах, а также обсуждены некоторые предыдущие исследования и решения. Классификация характера комментариев, содержащих ненависть, обеспечит платформам гибкость в работе с ними и откроет двери для новых обсуждений и решений.

Еще

Искусственные нейронные сети, глубокое обучение, классификация текста, предобработка текста, токсичные комментарии, , социальные сети, цифровая цивилизованность

Короткий адрес: https://sciup.org/14128882

IDR: 14128882   |   DOI: 10.47813/2782-5280-2023-2-4-0119-0133

Статья