Ячеистые структуры из титановых сплавов для медицинского применения, созданные методами аддитивных технологий: обзор

Автор: Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н., Семенычева А.В.

Журнал: Российский журнал биомеханики @journal-biomech

Статья в выпуске: 4 (106) т.28, 2024 года.

Бесплатный доступ

Создание медицинских изделий с помощью аддитивных технологий является весьма актуальной задачей. Возможность изготовления изделия по 3D-модели по результатам компьютерной томографии позволяет учесть все индивидуальные особенности пациента. В обзоре проведено сравнение механических свойств различных материалов, используемых для изготовления медицинских изделий, и рассмотрены методы решения задачи снижения модуля Юнга с целью приближения значений упругого модуля металлического материала и кости. Проанализированы основные типы ячеистых структур, используемых для изготовления имплантатов. Представлены современные данные о возможностях изготовления ячеистых структур для медицинского применения методом послойного сплавления из титановых сплавов. Показано, что механические и эксплуатационные свойства ячеистых структур сильно зависят от технологических параметров процесса, за счет варьирования которых технология послойного лазерного сплавления позволяет управлять свойствами и характеристиками ячеистых структур как на макро-, так и на микроуровне. Рассмотрены актуальные данные о зависимости механических и эксплуатационных свойств от параметров и типа ячеистых структур. Показано, что, благодаря гибкости технологии, она может быть использована для создания имплантатов различного типа. Проведено сравнение механических свойств изделий со сложной внутренней геометрией, изготовленных из титанового сплава Ti6Al4V и нелегированного титана, на основе ячеистых структур, отличающихся типом и геометрическими параметрами. Показано, что изделия из титановых сплавов типа Ti6Al4V, изготовленные методом послойного лазерного сплавления, могут быть успешно использованы в медицине за счет гибкости технологии, которая позволяет создавать персонализированные низкомодульные имплантаты и эндопротезы.

Еще

Аддитивные технологии, послойное лазерное сплавление, ячеистая структура, титановые сплавы, медицинские имплантаты

Короткий адрес: https://sciup.org/146282995

IDR: 146282995   |   DOI: 10.15593/RZhBiomeh/2024.4.01

Список литературы Ячеистые структуры из титановых сплавов для медицинского применения, созданные методами аддитивных технологий: обзор

  • Materials for medical application / ed. R.B. Heimann. – Wal-ter de Gruyter GmbH, Berlin/Boston. – 2020. – 638 p.
  • Phillips’science of dental materials – 13ed. / eds. C.Shen, H.R. Rawls, J.F. Esquivel-Upshaw. – Elsevier Inc, 2022. – 449 p.
  • Chang, J. Bioactive materials for bone regeneration / J. Chang, X. Zhang, K. Dai. – Higher Education Press. Else-vier Ltd, 2020. – 241 p.
  • Biomedical applications of the powder-based 3D printed tita-nium alloys: A review / A.X.Y. Guo, L. Cheng, S. Zhan, S. Zhang, W. Xiong, Z. Wang, G. Wang, S.C. Cao // Journal of Materials Science & Technology. – 2022. – Vol. 125. – P. 252–264.
  • Properties and applications of additively manufactured metal-lic cellular materials: A review / A. du Plessis, S.M.J. Razavi, M. Benedetti, S. Murchio, M. Leary, M. Watson, D. Bhate, F. Berto // Progress in Materials Science. – 2022. – Vol. 125. – P. 100918.
  • Biomaterials in tissue engineering and regenerative medicine: from basic concepts to state of the art approaches / B. Bhaskar, P.S. Rao, N. Kasoju, V. Nagarjuna, R.R. Baadhe. – Springer Nature Singapore Pte Ltd, 2021. – 589 p.
  • Advances in metallic biomaterials tissues, materials and bio-logical reactions / eds. M. Niinomi, T. Narushima M. Nakai. – Springer-Verlag Berlin Heidelberg, 2015. – 348 p.
  • The biological response to orthopaedic implants for joint re-placement: Part I: Metals / E. Gibon, D.F. Amanatullah, F. Loi, J. Pajarinen, A. Nabeshima, Z. Yao, M. Hamadouch, S.B. Goodman // Journal of Biomedical Materials Research Part B: Applied Biomaterials. – 2016. – Vol. 105, № 7. – P. 2162–2173.
  • Dahman, Y. Biomaterials science and technology fundamen-tals and developments / Y. Dahman. – Taylor & Francis Group, LLC, 2019. – 377 p.
  • Lotz, J.C. Mechanical properties of metaphyseal bone in the proximal femur / J.C. Lotz, T.N. Gerhart, W.C. Hayes // Jour-nal of Biomechanics. – 1991. – Vol. 24. – P. 317–329.
  • The elastic moduli of human subchondral, trabecular, and cor-tical bone tissue and the size-dependency of cortical bone modulus / K. Choi, J.L. Kuhn, M.J. Ciarelli, S.A. Goldstein // Journal of Biomechanics. – 1990. – Vol. 23, no. 11. – P. 1103–1112.
  • Metals for bone implants. Part 1. Powder metallurgy and im-plant Rendering / M.T. Andani, N.S. Moghaddam, C. Haberland, D. Dean, M.J. Miller, M. Elahinia // Acta Bio-materialia. – 2014. – Vol. 10. – P. 4058–4070.
  • Ti based biomaterials, the ultimate choice for orthopaedic im-plants – A review / M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia // Progress in Materials Science. – 2009. – Vol. 54, no. 3. – P. 397–425.
  • Microstructural, mechanical and in vitro biological properties of Ti6Al4V-5Cu alloy fabricated by selective laser melting / Y. Chen, W. Yang, S. Zhu, S. Shi // Materials Characteriza-tion. – 2023. – Vol. 200. – P. 112858.
  • Selective laser melting of Ti–35Nb composite from elemental powder mixture: Microstructure, mechanical behavior and corrosion behavior / J.C. Wang, Y.J. Liu, P. Qin, S.X. Liang, T.B. Sercombe, L.C. Zhang // Materials Science and Engi-neering: A. – 2019. – Vol. 760. – P. 214–224.
  • Biodegradable magnesium alloy WE43 porous scaffolds fab-ricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation / J. Liu, B. Liu, S. Min, B. Yin, B. Peng, Z. Yu, C. Wang, X. Ma, P. Wen, Y. Tian, Y. Zheng // Bioactive Ma-terials. – 2022. – Vol. 16. – P. 301–319
  • Niinomi, M. Mechanical properties of biomedical titanium al-loys / M. Niinomi // Materials Science and Engineering: A. – 1998. – Vol. 243, no. 1–2. – P. 231–236.
  • Evaluation of the mechanical compatibility of additively man-ufactured porous Ti–25Ta alloy for load-bearing implant ap-plications / N. Soro, H. Attar, E. Brodie, M. Veidt, A. Molotnikov, M.S. Dargusch // Journal of the Mechanical Behavior of Biomedical Materials. – 2019. – Vol. 97. – P. 149–158.
  • ASTM F 1713 2008: R2021: EDT 1. Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130) // American Society for Testing and Materials. – 2021.
  • Surface analysis, microstructural, mechanical and electro-chemical properties of new Ti-15Ta-5Zr alloy / C. Vasilescu, S.I. Drob, P. Osiceanu, P. Drob, J.M.C. Moreno, S. Preda, S. Ivanescu, E. Vasilescu // Metals and Materials Interna-tional. – 2015. – Vol. 21. – P. 242–250.
  • Improved mechanical properties of the new Ti-15Ta-xZr al-loys fabricated by selective laser melting for biomedical ap-plication / L. Yan, Y. Yuan, L. Ouyang, H. Li, A. Mirzasadeghi, L. Li // Journal of Alloys and Compounds. – 2016. – Vol. 688. – P. 156–162.
  • Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young's modulus / T. Ishimoto, K. Hagihara, K. Hisamoto, S.-H. Sun, T. Nakano // Scripta Materialia. – 2017. – Vol. 132. – P. 34–38.
  • Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr / N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, H. Toda // Materials Science and Engineering C. – 2005. – Vol. 25. – P. 370–376.
  • Design and mechanical properties of new β type titanium al-loys for implant materials / D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro // Materials Science and Engineering: A. – 1998. – Vol. 243. – P. 244–249.
  • The effect of pore size on the mechanical properties, biodeg-radation and osteogenic effects of additively manufactured magnesium scaffolds after high temperature oxidation: An in vitro and in vivo study / C. Wang, J. Liu, S. Min, Y. Liu, B. Liu, Y. Hu, Z. Wang, F. Mao, C. Wang, X. Ma, P. Wen, Y. Zheng, Y. Tian // Bioactive Materials. – 2023. – Vol. 28. – P. 537–548.
  • Forkmann, C. In vivo chronic scaffolding force of a resorba-ble magnesium scaffold / M. Joner, C. Forkmann // Bioactive Materials. – 2019. – Vol. 4. – P. 271–292.
  • Influence of design and postprocessing parameters on the deg-radation behavior and mechanical properties of additively manufactured magnesium scaffolds / A. Kopp, T. Derra, M. Müther, L. Jauer, J.H. Schleifenbaum, M. Voshage, O. Jung, R. Smeets, N. Kröger // Acta Biomaterialia. – 2019. – Vol. 98. – P. 23–35.
  • Selective laser manufacturing of Ti-based alloys and compo-sites: impact of process parameters, application trends, and fu-ture prospects / N. Singh, P. Hameed, R. Ummethala, G. Manivasagam, K.G. Prashanth, J. Eckert // Materials To-day Advances. – 2020. – Vol. 8 – P. 100097.
  • Yang, R. Development and application of low-modulus bio-medical titanium alloy Ti2448 / R. Yang, Y. Hao, S. Li // Bi-omedical Engineering, Trends in Materials Science / ed. A.N. Laskovski. – 2011. – P. 225–248.
  • Current trends in additive manufacturing of selective laser melting for biomedical implant applications / A.N. Aufa, M.Z. Hassan, Z. Ismail, F. Ramlie, K.R. Jamaludin, M.Y.M. Daud, J. Ren // Journal of Materials Research and Technology. – 2024. – Vol. 31. – P. 213–243.
  • Nicholson, J.W. Titanium Alloys for Dental Implants: A Re-view / J.W. Nicholson // Prosthesis. – 2020. – Vol. 2. – P. 100–116.
  • Titanium based bone implants production using laser powder bed fusion technology / F.N. Depboylu, E. Yasa, O. Poyraz, J. Minguella-Canela, F. Korkusuz, M.A. De los Santos Lopez // Journal of materials research and technology. – 2022. – Vol. 17. – P. 1408–1426.
  • Alloys-by-design: A low-modulus titanium alloy for addi-tively manufactured biomedical implants / E. Alabort, Y.T. Tang, D. Barba, R.C. Reed // Acta Materialia. – 2022. – Vol. 229. – P. 117749.
  • Fabrication, microstructure and properties of 10Ti-5 Nb-1Sn biomedical β titanium alloy with low elastic modulus and high strength-ductility synergy / Z. Jia, X. Song, S. Yang, X. Zhang, K. Zhou // Materials Today Communications. – 2024. – Vol. 39. – P. 109012.
  • A new look at biomedical Ti-based shape memory alloys / A. Biesiekierski, J. Wang, M.A. Gepreel, C. Wen // Acta Bi-omaterialia. – 2012. – Vol. 8. – P. 1661–1669.
  • Promising characteristics of gradient porosity Ti-6Al-4V al-loy prepared by SLM process / M. Fousová, D. Vojtěch, J. Kubásek, E. Jablonská, J. Fojt // Journal of the Mechanical Behavior of Biomedical Materials. – 2017. – Vol. 69. – P. 368–376.
  • Gibson, L.G. Cellular Solids: Structure and Properties / L.G. Gibson, M.F. Ashby – 2ed. – UK, Cambridge Cambridge University Press, 1997. – P. 429.
  • Перельмутер, М.Н. Концентрация напряжений в костных тканях и винтовых дентальных имплантах / М.Н. Перель-мутер // Российский журнал биомеханики. – 2023. – T. 27, № 2. – С. 18–29.
  • Influence of the structural orientation on the mechanical prop-erties of selective laser melted Ti6Al4V open-porous scaf-folds / V. Weibmann, R. Bader, H. Hansmann, N. Laufer // Materials & Design. – 2016. – Vol. 95. – P. 188–197.
  • Федорова, Н.В. Сравнение подходов численного моделирования пористых костных имплантатов из Ti-6Al-4V / Н.В. Федорова // Российский журнал биомеханики. – 2024. – Т. 28, № 1. – С. 67–76.
  • Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment / A. Kumar, S. Mandal, S. Barui, R. Vasireddi, U. Gbureck, M. Gelinsky, B. Basu // Materials Science and Engineering: R: Reports. – 2016. – Vol. 103. – P. 1–39.
  • Экспериментальное изучение распределения упругих напряжений в периимплантатной кости при зубном протезировании / В.Н. Трезубов, М.Л. Мишнев, Ю.В. Паршин, В.С. Модестов, Д.И. Яреха // Российский журнал биомеханики. – 2023. – Т. 27, № 3. – С. 10–23.
  • Investigation on the orientation dependence of elastic re-sponse in Gyroid cellular structures / L. Yang, C. Yan, H. Fan, Z. Li, C. Cai, P. Chen, Y. Shi, S. Yang // Mechanical Behavior of Biomedical Materials. – 2019. – Vol. 90. – P. 73–85.
  • Microstructure and mechanical properties of porous titanium based on controlling Young's modulus / G. Xu, H. Kou, X. Liu, F. Li, J. Li, L. Zhou // Rare Metal Materials and Engi-neering. – 2017. – Vol. 46. – P. 2041–2048.
  • High-strength, porous additively manufactured implants with optimized mechanical osseointegration / C.N. Kelly, T. Wang, J. Crowley, D. Wills, M.H. Pelletier, E.R. Westrick, S.B. Adams, K. Gall, W.R. Walsh // Biomaterials. – 2021. – Vol. 279. – P. 121206.
  • Koju, N. Additively manufactured porous Ti6Al4V for bone implants: A review / N. Koju, S. Niraula, B. Fotovvati // Met-als. – 2022. – Vol. 12. – P. 687.
  • Zadpoor, A.A. Additively manufactured porous metallic bio-materials / A.A. Zadpoor // Journal of Materials Chemistry B. – 2019. – Vol. 7. – P. 4088.
  • In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects / G. Li, L. Wang, W. Pan, F. Yang, W. Jiang, X. Wu, X. Kong, K. Dai, Y. Hao // Scientific Reports. – 2016. – Vol. 6. – P. 1–11.
  • Experimental study on the high-damping properties of metal-lic lattice structures obtained from SLM / F. Scalzo, G. Totis, E. Vaglio, M. Sortino // Precision Engineering. – 2021. – Vol. 71. – P. 63–77.
  • Deviations of the SLM produced lattice structures and their influence on mechanical properties / R. Vrána, T. Koutecký, O. Červinek, T. Zikmund, L. Pantělejev, J. Kaiser, D. Koutný // Materials. – 2022. – Vol. 15. – P. 3144.
  • Hosseini, S.A. Comparison of stress distribution in fully po-rous and dense-core porous scaffolds in dental implantation / S.A. Hosseini, H.R. Katoozian // Journal of the mechanical behavior of biomedical materials. – 2024. – Vol. 156. – P. 106602.
  • Федорова, Н.В. Моделирование нагрузок, создаваемых мостовидным зубным протезом с опорой на имплантаты верхней челюсти / Н.В. Федорова, А.Ю. Ларичкин, А.А. Шевела // Российский журнал биомеханики. – 2022. – T. 26, №2. – С. 56–66.
  • Method of computational design for additive manufacturing of hip endoprosthesis based on basic-cell concept / P. Bolshakov, A.G. Kuchumov, N. Kharin, K. Akifyev, E. Statsenko, V.V. Silberschmidt // International Journal for Numerical Methods in Biomedical Engineering. – 2024. – Vol. 40, № 3. – P. e3802.
  • Kharin, N. Numerical and experimental study of a lattice structure for orthopedic applications / N. Kharin, P. Bol-shakov, A.G. Kuchumov // Materials. – 2023. – Vol. 16. – P. 744.
  • Patient-specific bone organ modeling using CT based FEM / O. Gerasimov, N. Kharin, E. Statsenko, D. Mukhin, D. Berezhnoi, O. Sachenkov // Lecture Notes in Computa-tional Science and Engineering. – Vol. 141. Mesh Methods for Boundary-Value Problems and Applications / eds. Badriev I.B., Banderov V., Lapin S.A. – Springer Nature Switzerland, 2022. – P. 125–139.
  • Fabrication and optimisation of Ti-6Al-4V lattice-structured total shoulder implants using laser additive manufacturing / O. Bittredge, H. Hassanin, M.A. El-Sayed, H.M. Eldessouky, N.A. Alsaleh, N.H. Alrasheedi, K. Essa, M. Ahmadein // Ma-terials. – 2022. – Vol. 15. – P. 3095.
  • Two-Staged Technology for CoCr stent production by SLM / P. Kilina, A. Drozdov, A.G. Kuchumov, E. Morozov, L. Sirotenko, A. Smetkin // Materials. – 2024. – Vol. 17. – P. 5167.
  • Influence of porous titanium-based jaw implant structure on osseointegration mechanisms / P. Kilina, A.G. Kuchumov, L. Sirotenko, V. Vassilouk, S. Golovin, A. Drozdov, E.V. Sadyrin // Journal of the Mechanical Behavior of Bio-medical Materials. – 2024. – Vol. 160. – P. 106724
  • Пилотное исследование потери устойчивости на сжатие решетчатого эндопротеза с помощью рентгеновской томографии / К.Н. Акифьев, Н.В. Харин, Е.О. Стаценко, О.А. Саченков, П.В. Большаков // Российский журнал биомеханики. – 2023. – Т. 27, № 4. – С. 40–49.
  • Compressive mechanical properties and energy absorption characteristics of SLM fabricated Ti6Al4V triply periodic minimal surface cellular structures / Q. Sun, J. Sun, K. Guo, L. Wang // Mechanics of Materials. – 2022. – Vol. 166. – P. 104241.
  • Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering / C.N. Kelly, J. Francovich, S. Julmi, D. Safranski, R.E. Guldberg, H.J. Maier, K. Gall // Acta Bio-materialia. – 2019. – Vol. 94. –P. 610–626.
  • Processing, structure, and properties of additively manufac-tured titanium scaffolds with gyroid-sheet architecture / C.N. Kelly, C. Kahra, H.J. Maier, K. Gall // Additive Manu-facturing. – 2021. – Vol. 41. – P. 101916.
  • Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties / H. Montazerian, E. Davoodic, M. Asadi-Eydivand, J. Kadkhodapour, M. Solati-Hashjin // Materials & Design. – 2017. – Vol. 126. – P. 98–114.
  • Rahmat, N. Влияние различных типов ячеек и дефектов на механические характеристики ортопедических имплантатов, изготовленных на основе аддитивных технологий / N. Rahmat, J. Kadkhodapour, M. Arbabtaftрр // Физическая мезомеханика. – 2023. – Vol. 26, № 2. – P. 89–105.
  • Yuan, L. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review / L. Yuan, S. Ding, C. Wen // Bioactive Materials. – 2019. – Vol. 4. – P. 56–70.
  • Shell offset enhances mechanical and energy absorption prop-erties of SLM-made lattices with controllable separated voids / F. Liu, T. Zhou, T. Zhang, H. Xie, Y. Tang, P. Zhang // Ma-terials & Design. – 2022. – Vol. 217. – P. 110630.
  • Architected cellular materials: A review on their mechanical properties towards fatigue tolerant design and fabrication / M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto // Materials Science & Engineering R. – 2021. – Vol. 144. – P. 100606.
  • The relationships between deformation mechanisms and me-chanical propertie sof additively manufactured porous bio-materials / J. Kadkhodapour, H. Montazerian, A.Ch. Darabi, A. Zargarian, S. Schmauder // Journal of the Mechanical Behavior of Biomedical Materials. – 2017. – Vol. 70. – P. 28–42.
  • Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by Selective Laser Melting (SLM) / M. Mazur, M. Leary, M. McMillan, S. Sun, D. Shidid, M. Brandt // Laser Additive Manufacturing Materials, Design, Technologies, and Applications. A volume in Woodhead Publishing Series in Electronic and Optical Materials. 2017. – P. 119–161.
  • Deshpande, V. Foam topology: bending versus stretching dominated architectures / V. Deshpande, M. Ashby, N. Fleck // Acta Materilia. – 2001. – Vol. 49, № 6. – P. 1035–1040.
  • Zadpoor, A.A. Mechanical performance of additively manu-factured meta-biomaterials / A.A. Zadpoor // Acta Bio-materilia. – 2019. – Vol. 85. – P. 41–59.
  • Metallic powder-bed based 3D printing of cellular scaffolds for orthopedic implants: A state-of-the-art review on manu-facturing, topological design, mechanical properties and bio-compatibility / X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, W.Y. Yeong // Materials Science and Engineering C. – 2017. – Vol. 76. – P. 1328–1343.
  • The influence of laser power and scan speed on the dimen-sional accuracy of Ti6Al4V thin-walled parts manufactured by selective laser melting / G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, N. Alves, F.S. Silva // Metals. – 2022. – Vol. 12. – P. 1226.
  • Genovese, K. Microscopic full-field three-dimensional strain measurement during the mechanical testing of additively manufactured porous biomaterials / K. Genovese, S. Leeflang, A.A. Zadpoor // Journal of the Mechanical Behavior of Bio-medical Materials. – 2017. – Vol. 69. – P. 327–341.
  • Mechanical and in vitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting / X. Yan, Q. Li, S. Yin, Z. Chen, R. Jenkins, C. Chen, J. Wang, W. Ma, R. Bolot, R. Lupoi, Z. Ren, H. Liao, M. Liu // Journal of Al-loys and Compounds. – 2019. – Vol. 782. – P. 209–223.
  • Physical–mechanical characteristics and microstructure of Ti6Al7Nb lattice structures manufactured by selective laser melting / C. Cosma, I. Drstvensek, P. Berce, S. Prunean, S. Legutko, C. Popa, N. Balc // Materials. – 2020. – Vol. 13. – P. 4123.
  • Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM) / Y. Du, H. Liang, D. Xie, N. Mao, J. Zhao, Z. Tian, C. Wang, L. Shen // Materials Chemistry and Physics. – 2020. – Vol. 239. – P. 121968.
  • Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrica-tion by selective laser melting and in vitro biocompatibility / H. Liang, Y. Yang, D. Xie, L. Li, N. Mao, C. Wang, Z. Tian, Q. Jiang, L. Shen // Journal of Materials Science & Technol-ogy. – 2019. – Vol. 35. – P. 1284–1297.
  • Extension of the voronoi diagram algorithm to orthotropic space for material structural design / P. Bolshakov, N. Kharin, A. Agathonov, E. Kalinin, O. Sachenkov // Biomimetics. – 2024. – Vol. 9. – P. 185.
  • Килина, П.Н. Формирование периодической структуры армирующего каркаса костной ткани на основе порошкового титанового сплава селективным лазерным плавле-нием: автореф. дис. канд. техн. наук / П.Н. Килина. – Пермь. – 2020. – C. 18.
  • Continuous graded Gyroid cellular structures fabricated by se-lective laser melting: Design, manufacturing and mechanical properties / L. Yang, R. Mertens, M. Ferrucci, C. Yan, Y. Shi, S. Yang // Materials & Design. – 2019. – Vol. 162. – P. 394–404.
  • A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting / I. Maskeryn, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, R.D. Wildman, R.J.M. Hague // Materials Sci-ence & Engineering A. – 2016. – Vol. 670. – P. 264–274.
  • Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application / S. Wang, L. Liu, K. Li, L. Zhu, J. Chen, Y. Hao // Materials and Design. – 2019. – Vol. 168. – P. 107643.
  • Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application / Y. Xiong, W. Wang, R. Gao, H. Zhang, L. Dong, J. Qin, B. Wang, W. Ji, X. Li // Materials and Design. – 2020. – Vol. 195. – P. 108994.
  • Effect of the direction of the gradient on the mechanical prop-erties and energy absorption of additive manufactured Ti-6Al-4 V functionally graded lattice structures / M. Zhao, F. Liu, H. Zhou, T. Zhang, D.Z. Zhang, G. Fu // Journal of Alloys and Compounds. – 2023. – Vol. 968. – P. 171874.
  • Functionally graded porous scaffolds in multiple patterns: new design method, physical and mechanical properties / F. Liu, Z. Mao, P. Zhang, D.Z. Zhang, J. Jiang, Z. Ma // Ma-terials & Design – 2018. – Vol. 160. – P. 849–860.
  • Kwok, P.J. Porous titanium by electrochemical dissolution of steel space-holders / P.J. Kwok, S.M. Oppenheimer, D.C. Dunand // Advanced Engineering Materials. – 2008. – Vol. 10. – P. 820–825.
  • Fabrication of porous titanium implants with biomechanical compatibility / Y.J. Chen, B. Feng, Y.P. Zhu, J. Weng, J.X. Wang, X. Lu // Materials Letters. – 2009. – Vol. 63. – P. 2659–2661.
  • Nikolova, M.P. Recent advances in biomaterials for 3D scaf-folds: A review / M.P. Nikolova, M.S. Chavali // Bioactive Materials. – 2019. –Vol. 4. – P. 271–292.
  • Role of titanium in bio implants and additive manufacturing: An overview / T. Grover, A. Pandey, S.T. Kumari, A. Awasthi, B. Singh, P. Dixit, P. Singhal, K.K. Saxena // Materials Today: Proceedings. – 2020. – Vol. 26, № 2. – P. 3071–3080.
  • Titanium and titanium alloys in dentistry: current trends, re-cent developments, and future prospects / M.E. Hoque, N.-N. Showva, M. Ahmed, A.B. Rashid, S.E. Sadique, T. El-Bialy, H. Xu // Heliyon. – 2022. – Vol. 8. – P. e11300.
  • Aufa, A.N. Recent advances in Ti-6Al-4V additively manu-factured by selective laser melting for biomedical implants: Prospect development / A.N. Aufa, M.Z. Hassan, Z. Ismail // Journal of Alloys and Compounds. – 2022. – Vol. 896. – P. 163072.
  • Powder based additive manufacturing for biomedical applica-tion of titanium and its alloys: a review / T.-S. Jang, D. Kim, G. Han, C.-B. Yoon, H.-D. Jung // Biomedical Engineering Letters. – 2020. – Vol. 10, № 4. – P. 505–516.
  • Ataee, A. A comparative study on the nanoindentation behav-ior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds / A. Ataee, Y. Li, C. Wen // Acta Biomaterialia. – 2019. – Vol. 97. – P. 587–596.
  • Munir, K.S. Metallic scaffolds manufactured by selective la-ser melting for biomedical applications. Chap. 1 in Metallic Foam Bone. Processing, Modification and Characterization and Properties / K.S. Munir, Y. Li, C. Wen // Elsevier Ltd. – 2017. – P. 1–23.
  • Alloy design via additive manufacturing: Advantages, chal-lenges, applications and perspectives / A. Bandyopadh-yay,K.D. Traxel, M. Lang, M. Juhasz, N. Eliaz, S. Bose // Ma-terials Today. – 2022. – Vol. 52. – P. 207–224.
  • Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds / A. Arjunan, M. Demetriou, A. Baroutaji, C.J. Wang // Journal of the Mechanical Behavior of Biomedical Materials. – 2020. – Vol. 102. – P. 103517.
  • Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments / A.K. Singla, M. Banerjee, A. Sharma, J. Singh, A. Bansal, M.K. Gupta, N. Khanna, A.S. Shahi, D.K. Goyal // Journal of Manufacturing Pro-cesses. – 2021. – Vol. 64. – P. 161–187.
  • A critical review on additive manufacturing of Ti-6Al-4V al-loy: microstructure and mechanical properties / H.D. Nguyen, A. Pramanik, A.K. Basak, Y. Dong, C. Prakash, S. Debnath, S. Shankar, I.S. Jawahir, S. Dixit, D. Buddhi // Journal of materials research and technology. – 2022. – Vol. 18. – P. 4641–4661.
  • Microstructural features and compressive properties of SLM Ti6Al4V lattice structures / J. Ge, J. Huang, Y. Lei, P. O'Reilly, M. Ahmed, C. Zhang, X. Yan, S. Yin // Surface and Coatings Technology. – 2020. – Vol. 403. – P. 126419.
  • Selective laser melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications / L. Mullen, R.C. Stamp, W.K. Brooks, E. Jones, C.J. Sutcliffe // Journal of Biomedical Materials Research Part B: Applied Biomaterials. – 2009. – Vol. 89B, № 2. – P. 325–334.
  • Finite element analysis of bone and implant stresses for cus-tomized 3D-printed orthopaedic implants in fracture fixation / L. Yan, J.L. Lim, J.W. Lee, C.S.H. Tia, G.K. O’Neill, D.Y.R. Chong // Medical & biological engineering & compu-ting. – 2020. – Vol. 58, № 5. – P. 921–931.
  • Biomechanics of locked plates and screws / K.A. Egol, E.N. Kubiak, E. Fulkerson, F.J. Kummer, K.J. Koval // Journal of orthopaedic trauma. – 2004. – Vol. 18, № 8. – P. 488–493.
  • Slanted and cluttered: Solving deficiencies in SLM-manufac-tured lattice geometries / A. Kostadinov, L. Yan, A.Q.A. Teo, G. O’Neill // Materials & Design. – 2021. – Vol. 211. – P. 110130.
  • Selective laser melting of Ti-6Al-4V: The impact of post-pro-cessing on the tensile, fatigue and biological properties for medical implant applications / P. Jamshidi, M. Aristizabal, W. Kong, V. Villapun, S.C. Cox, L.M. Grover, M.M. Attallah // Materials. – 2020. – Vol. 13. – P. 2813.
  • Critical evaluation of known bone material properties to real-ize anisotropic FE-simulation of the proximal femur / D.C. Wirtz, N. Schiffers, T. Pandorf, K. Radermacher, D. Weichert, R. Forst // Journal of Biomechanics. – 2000. – Vol. 33, № 10. – P. 1325–1330.
  • Morgan, E.F. Dependence of yield strain of human trabecular bone on anatomic site / E.F. Morgan, T.M. Keaveny // Journal of Biomechanics. – 2001. – Vol. 34, № 5. – P. 569–577.
  • Timercan, A. Axial tension/compression and torsional loading of diamond and gyroid lattice structures for biomedical im-plants: Simulation and experiment / A. Timercan, P. Terriault, V. Brailovski // Materials & Design. – 2023. – Vol. 225. – P. 111585.
  • An automated analysis of intracortical porosity in human fem-oral bone across age / M.S. Stein, S.A. Feik, C.D.L. Thomas, J.G. Clement, J.D. Wark // Journal of Bone and Mineral Research. – 1999. – Vol. 14, № 4. – P. 624–632.
  • Translating Biomaterials for Bone Graft Bench-top to Clinical pplications. Ed. J.L. Ong, T. Guda. – USA: Taylor & Francis Group, LLC, 2017. – 275 p.
  • Ashby, M. The properties of foams and lattices / M. Ashby // Philosophical Transactions of the Royal Society A. – 2006. – Vol. 364. – P. 15–30.
  • Mechanical properties of additively manufactured octagonal honeycombs / R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, A. Zadpoor // Materials Science and Engineering: C. – 2016. – Vol. 69. – P. 1307–1317.
  • Zadpoor, A.A. Analytical relationships for prediction of the mechanical properties of additively manufactured porous bio-materials / A.A. Zadpoor, R. Hedayati // Journal of Biomedi-cal Materials Research Part A. – 2016. – Vol. 104, № 12. – P. 3164–3174.
  • Biomorphic porous Ti6Al4V gyroid scaffolds for bone im-plant applications fabricated by selective laser melting / P. Hameed, C.-F. Liu, R. Ummethala, N. Singh, H.-H. Huang, G. Manivasagam, K.G. Prashanth // Progress in Additive Manufacturing. – 2021. – Vol. 6. – P. 455–469.
  • Mahmoud, D. The influence of selective laser melting defects on the fatigue properties of Ti6Al4V porosity graded gyroids for bone implants / D. Mahmoud, K.S. Al-Rubaie, M.A. Elbestawi // International Journal of Mechanical Sci-ences. – 2021. – Vol. 193. – P. 106180.
  • Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility anal-ysis and photoelastic study / F. Yang, C. Chen, Q. Zhou, Y. Gong, R. Li, C. Li, F. Klämpfl, S. Freund, X. Wu, Y. Sun, X. Li, M. Schmidt, D. Ma, Y.C. Yu // Scientific Reports. – 2017. – Vol. 7. – P. 45360.
  • Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications / Z.J. Wally, A.M. Haque, A. Feteira, F. Claeyssens, R. Goodall, G.C. Reilly // Journal of the Mechanical Behavior of Biomed-ical Materials. – 2019. – Vol. 90. – P. 20–29.
  • Relationship between unit cell type and porosity and the fa-tigue behavior of selective laser melted meta-biomaterials / S.A. Yavari, S. Ahmadi, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, A. Zadpoor // Journal of the Mechanical Behav-ior of Biomedical Materials. – 2015. – Vol. 43. – P. 91–100.
  • Gautam, R. Performance of strut-reinforced Kagome truss core structure under compression fabricated by selective laser melting / R. Gautam, S. Idapalapati // Materials & Design. – 2019. – Vol. 164. – P. 107541.
  • Revival of pure titanium for dynamically loaded porous implants using additive manufacturing / R. Wauthle, S.M. Ahmadi, S.A. Yavari, M. Mulier, A.A. Zadpoor, H. Weinans, J. Van Humbeeck, J.-P. Kruth, J. Schrooten // Materials Science and Engineering: C. – 2015. – Vol. 54. – P. 94–100.
  • Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone in-growth / P. Ouyang, H. Dong, X. He, X. Cai, Y. Wang, J. Li, H. Li, Z. Jin // Materials and Design. – 2019. – Vol. 183. – P. 108151.
  • Effect of pore size on bone ingrowth into porous titanium im-plants fabricated by additive manufacturing: An in vivo ex-periment / N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda // Materials Science and Engineering: C. – 2016. – Vol. 59. – P. 690–701.
  • Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications / A. Ataee, Y. Li, M. Brandt, C. Wen // Acta Materilia. – 2018. – Vol. 158. – P. 354–368.
  • Fatigue performance of additively manufactured meta-bio-materials: the effects of topology and material type / S. Ahmadi, R. Hedayati, Y. Li, K. Lietaert, N. Tümer, A. Fatemi, C. Rans, B. Pouran, H. Weinans, A. Zadpoor // Acta Biomaterilia. – 2018. – Vol. 65. – P. 292–304.
  • Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting / B. Van Hooreweder, Y. Apers, K. Lietaert, J.-P. Kruth // Acta Biomaterialia – 2017. – Vol. 47. – P. 193–202.
  • The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting / C.N. Kelly, N.T. Evans, C.W. Irvin, S.C. Chapman, K. Gall, D.L. Safranski // Materials Science and Engineering C. – 2019. – Vol. 98. – P. 726–736.
  • Perez, R.A. Role of pore size andmorphology inmusculo-skel-etal tissue regeneration / R.A. Perez, G. Mestres // Materials Science and Engineering C. – 2016. – Vol. 61. – P. 922–939.
  • Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties / F. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S. Ahmadi, H. Weinans, A. Zadpoor // Acta Biomaterilia. – 2017. – Vol. 53. – P. 572–584.
  • Multi-scale mapping for collagen-regulated mineralization in bone remodeling of additive manufacturing porous implants / P.-I. Tsai, T.-N. Lam, M.-H. Wu, K.-Y. Tseng, Y.-W. Chang, J.-S. Sun, Y.-Y. Li, M.-H. Lee, S.-Y. Chen, C.-K. Chang, C.-J. Sui, C.-H. Lin, C.-Y. Chiang, C.-S. Ku, N.-T. Tsou, S.-J. Shih, C.-C. Wang, E.-W. Huang // Materials Chemistry and Physics. – 2019. – Vol. 230. – P. 83–92.
  • Effect of topological structure on antibacterial behavior and biocompatibility of implant / Z. Guo, Ch. Wang, C. Du, J. Sui, J. Liu // Procedia CIRP. – 2020. – Vol. 89. – P. 126–131.
  • Mullender M.G. Proposal for the regulatory mechanism of Wolff’s law / M.G. Mullender, R. Huiskes // Journal of Or-thopaedic Research. – 1995. – Vol. 13, no. 4. – P. 503–512.
  • Mechanical analysis of a rodent segmental bone defect model: the effects of internal fixation and implant stiffness on load transfer / S.A. Yavari, J. van der Stok, S. Ahmadi, R. Wauthle, J. Schrooten, H. Weinans, A.A. Zadpoor // Jour-nal of Biomechanics. – 2014. – Vol. 47, no. 11. – P. 2700–2708.
  • Curvotaxis directs cell migration through cell-scale curvature landscapes / L. Pieuchot, J. Marteau, A. Guignandon, T. Dos Santos, I. Brigaud, P.-F. Chauvy, T. Cloatre, A. Ponche, T. Petithory, P. Rougerie // Nature Communica-tions. – 2018. – Vol. 9, no. 1. – P. 3995.
  • Mesoscale substrate curvature overrules nanoscale contact guidance to direct bone marrow stromal cell migration / M. Werner, N.A. Kurniawan, G. Korus, C.V. Bouten, A. Petersen // Journal of The Royal Society Interface. – 2018. – Vol. 15, no. 145. – P. 20180162.
  • How linear tension converts to curvature: geometric control of bone tissue growth / C.M. Bidan, K.P. Kommareddy, M. Rumpler, P. Kollmannsberger, Y.J.M. Bréchet, P. Fratzl, J.W.C. Dunlop // PLoS ONE. – 2012. – Vol. 7, no. 5. – P. e36336.
  • Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nu-clear deformation / M. Werner, S.B.G. Blanquer, S.P. Haimi, G. Korus, J.W.C. Dunlop, G.N. Duda, D.W. Grijpma, A. Petersen // Adv Sci. – 2016. – Vol. 4, no. 2. – P. 1600347.
Еще
Статья научная