Электроэнцефалографические биомаркеры экспериментально индуцированного стресса

Автор: Пашков Антон Алексеевич, Дахтин Иван Сергеевич, Харисова Надежда Сагитьяновна

Журнал: Психология. Психофизиология @jpps-susu

Рубрика: Библиографические обзоры

Статья в выпуске: 4 т.10, 2017 года.

Бесплатный доступ

Представлены результаты анализа опубликованных за рубежом психофизиологических исследований, посвященных проблеме использования электроэнцефалографических (ЭЭГ) показателей в качестве объективных и надежных биомаркеров стресса, экспериментально вызванного у испытуемых в лабораторных условиях. Описаны основные экспериментальные протоколы, используемые для индуцирования стресса у здоровых испытуемых. На основании анализа опубликованных работ выделены и детально описаны основные электроэнцефалографические биомаркеры стресса, представлены возможные перспективы использования данных маркеров в клинической практике для диагностики психических расстройств и формирование группы мишеней для исследования в условиях экспериментального воздействия и терапии. Проанализированы принципиальные ограничения использования электроэнцефалографических биомаркеров в качестве основного диагностического инструмента в фундаментальных научных и прикладных исследованиях. Дано представление о перспективах дальнейшего использования данных ЭЭГ для изучения феномена стресса. Показано, что ЭЭГ- и биомаркеры вызванных потенциалов (ВП-биомаркеры) наряду с клиническими (нейроэндокринными, иммунными и т. п.) биомаркерами и биомаркерами, полученными при использовании других методов нейровизуализации (позитронно-эмиссионной томографии, ПЭТ и функциональной магнитно-резонансной томографии, фМРТ), являются информативным инструментом диагностики стресса и его последствий

Еще

Стресс, электроэнцефалография, биомаркеры

Короткий адрес: https://sciup.org/147160084

IDR: 147160084   |   DOI: 10.14529/psy170407

Список литературы Электроэнцефалографические биомаркеры экспериментально индуцированного стресса

  • Aftanas L.I., Reva N.V., Varlamov A.A., Pavlov S.V., Makhnev V.P. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics//Neuroscience and behavioral physiology, 2004, no. 8, pp. 859-867. DOI: https://doi.org/10.1023/B:NEAB.0000038139.39812.eb.
  • Antov M.I., Melicherova U., Stockhorst U. Cold pressor test improves fear extinction in healthy men//Psychoneuroendocrinology, 2015, no. 54, pp. 54-59. DOI: https://doi.org/10.1016/j.psyneuen.2015.01.009
  • Banis C., Geerlings L., Lorist M.M. Acute Stress Modulates Feedback Processing in Men and Women: Differential Effects on the Feedback-Related Negativity and Theta and Beta Power//PLOS One, 2014, no. 4, pp. 1-17. DOI: https://doi.org/10.1371/journal.pone.0095690
  • Baratta M.V., Rozeske R.R., Maier S.F. Understanding stress resilience//Frontiers in be-havioral neuroscience, 2013, no. 7, pp. 1-2. DOI: https://doi.org/10.3389/fnbeh.2013.00158
  • Bazanova O.M., Vernon D. Interpreting EEG alpha activity//Neuroscience and Biobehavioral reviews, 2014, no. 44, pp. 94-110. DOI: https://doi.org/10.1016/j.neubiorev.2013.05.007
  • Boto E., Meyer S.S., Shah V., Alem O., Knappe S. et al. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magne-tometers//NeuroImage, 2017, no. 149, pp. 404-414. DOI: https://doi.org/10.1016/j. href='contents.asp?titleid=3056' title='NeuroImage'>NeuroImage.2017.01.034
  • Calcia M.A., Bonsall D.R., Bloomfield P.S., Selvaraj S., Barichello T., Howes O.D. Stress and neuroinflammation: a systematic review of the effects stress on microglia and the implications for mental illness//Psychopharmacology, 2016, no. 9, pp. 1637-1650. DOI: https://doi.org/10.1007/s00213-016-4218-9
  • Cavanagh J.F., Shackman A.J. Frontal Midline Theta Reflects Anxiety and Cognitive Con-trol: Meta-Analytic Evidence//Journal of physiology-Paris, 2015, no. 109, pp. 3-15. DOI: https://doi.org/10.1016/j.jphysparis.2014.04.003
  • Cavanagh J.F., Frank M.J., Allen J.J.B. Social stress reactivity alters reward and punishment learning//Social Cognitive and Affective Neuroscience, 2011, no. 6, pp. 311-320 DOI: https://doi.org/10.1093/scan/nsq041
  • Cohen M.X. Where Does EEG Come From and What Does It Mean?//Trends in Neurosci-ences, 2017, no. 4, pp. 208-218. DOI: https://doi.org/10.1016/j.tins.2017.02.004
  • Dunkley B.T., Sedge P.A., Doesburg S.M., Grodecki R.J., Jetly R.et al. Theta, mental flexi-bility, and post-traumatic stress disorder: connecting in the parietal cortex//PLOS One, 2015, no. 4, pp. 1-17. DOI: https://doi.org/10.1371/journal.pone.0123541
  • Fingelkurts A.A. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression//Biological Psychiatry, 2015, no. 12, pp. 1050-1060. DOI: https://doi.org/10.1016/j.biopsych.2014.12.011
  • Fontenelle L.F., Mendlowicz M.V., Ribeiro P., Piedade R.A., Versiani M. Low-resolution electromagnetic tomography and treatment response in obsessive-compulsive disorder//In-ternational Journal of Neuropsychopharmacology, 2006, no. 9, pp. 89-94. DOI: https://doi.org/10.1017/S1461145705005584
  • Fumoto M., Sato-Suzuki I., Seki Y., Mohri Y., Arita H. Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition//Neuroscience research, 2004, no. 3, pp. 307-317. DOI: https://doi.org/10.1016/j.neures.2004.08.005
  • Gärtner M., Grimm S., Bajbouj M. Frontal midline theta oscillations during mental arithme-tic: effect of stress//Frontiers in Behavioral Neuroscience, 2015, no. 9, pp. 1-8. DOI: https://doi.org/10.3389/fnbeh.2015.00096
  • Gruzelier J.H. EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants//Neuroscience and Biobehavioral Reviews, 2014, no. 44, pp. 124-141. DOI: https://doi.org/10.1016/j.neubiorev.2013.09.015
  • Güntekin B., Basar E. A review of brain oscillations in perception of faces and emotional pictures//Neuropsychologia, 2014, no. 58, pp. 33-51. j.Neuropsychologia.2014.03.014 DOI: https://doi.org/10.1016/
  • Harrewijn A., Van der Molen M.J.W., Westenberg P.M. Putative EEG measures of social anxiety: Comparing frontal alpha asymmetry and delta-beta cross-frequency correlation.//Cognitive, Affective and Behavioral Neuroscience, 2016, no. 6, pp. 1086-1098. DOI: https://doi.org/10.3758/s13415-016-0455-y
  • Jeste S.S., Frohlich J., Loo S.K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders//Current opinion in neurology, 2015, no. 28, pp. 110-116. DOI: https://doi.org/10.1097/WCO.0000000000000181
  • Knyazev G.G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes//Neuroscience and Biobehavioral Reviews, 2012, no. 36, pp. 677-695. DOI: https://doi.org/10.1016/j.neubiorev.2011.10.002
  • Koolhaas J.M., Bartolomucci A., Buwalda B., de Boer S.F., Korte S.M. et al. Stress re-visited: a critical evaluation of stress concept//Neuroscience and Biobehavioral Reviews, 2011, no. 5, pp. 1291-1301. DOI: https://doi.org/10.1016/j.neubiorev.2011.02.003
  • Kurdi B., Lozano S., Banaji M.R. Introducing the Open Affective Standardized Image Set (OASIS)//Behavioral research methods, 2017, no. 49, pp. 457-470. DOI: https://doi.org/10.3758/s13428-016-0715-3
  • Libkuman T.M., Otani H., Kern R., Viger S.G., Novak N. Multidimensional normative ratings for the International Affective Picture System//Behavioral research methods, 2007, no. 39, pp. 326-334 DOI: https://doi.org/10.3758/BF03193164
  • Liu Q., Farahibozorg S., Porcaro C., Wenderoth N., Mantini D. Detecting large-scale networks in the human brain using high-density electroencephalography//Human Brain Mapping, 2017, no. 9, pp. 4631-4643 DOI: https://doi.org/10.1002/hbm.23688
  • Maras P.M., Baram T.Z. Sculpting the hippocampus from within: stress, spines and CRH//Trends in neuroscience, 2012, no. 5, pp. 315-324. DOI: https://doi.org/10.1016/j.tins.2012.01.005
  • Marchewka A., Zurawski L., Jednorog K., Grabowska A. The Nencki Affective Picture System (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture database//Behavioral research methods, 2014, no. 46, pp. 596-610. DOI: https://doi.org/10.3758/s13428-013-0379-1
  • McEwen B.S., Nasca C., Gray J.D. Stress effects on neuronal structure: hippocampus, amygdala and prefrontal cortex//Neuropsychopharmacology, 2016, no. 1, pp. 3-23 DOI: https://doi.org/10.1038/npp.2015.171
  • Menard C., Pfau M.L., Hodes G.E., Russo S.J. Immune and neuroendocrine mechanisms of stress vulnerability and resilience//Neuropsychopharmacology, 2017, no. 1, pp. 62-80 DOI: https://doi.org/10.1038/npp.2016.90
  • Murphy P.R., Robertson I.H., Balsters J.H., Connell R.G. O' Pupillometry and P3 index the locus coeruleus -noradrenergic arousal function in humans//Psychophysiology, 2011, no. 6, pp. 1-12. DOI: https://doi.org/10.1111/j.1469-8986.2011.01226.x
  • Naegeli C., Zeffiro T., Piccirelli M., Jaillard A., Weilenmann A. Locus Coeruleus Activity Mediates Hyper-Responsiveness in Posttraumatic Stress Disorder//Biological psychiatry, 2017, no. 17, pp. 31940-31946.
  • Narayanan N.S., Cavanagh J.F., Frank M.J., Laubach M. Common medial frontal mech-anisms of adaptive control in humans and rodents//Nature Neuroscience, 2013, no. 12, pp. 1888-1895 DOI: https://doi.org/10.1038/nn.3549
  • Nelson B.D., Hodges A., Hajcak G., Shankman S.A. Anxiety sensitivity and the anticipation of predictable and unpredictable threat: Evidence from the startle response and event-related potentials//Journal of Anxiety Disorders, 2015, no. 33, pp. 62-71. j.janxdis.2015.05.003 DOI: https://doi.org/10.1016/
  • Nelson B.D., Hajcak G., Shankman S.A. Event-related potentials to acoustic startle probes during the anticipation of predictable and unpredictable threat//Psychophysiology, 2015, no. 7, pp. 887-894 DOI: https://doi.org/10.1111/psyp.12418
  • Palmiero M., Piccardi L. Frontal EEG Asymmetry of Mood: A Mini-Review//Frontiers in Behavioral Neuroscience, 2017, no. 11, pp. 1-8. DOI: https://doi.org/10.3389/fnbeh.2017.00224
  • Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles//Clinical Neurophysiology, 1999, no. 11, pp. 1842-1857. DOI: https://doi.org/10.1016/S1388-2457(99)00141-8
  • Pinner J.F.L., Cavanagh J.F. Frontal theta accounts for individual differences in the cost of conflict on decision making//Brain Research, 2017, no. 10, pp. 73-80. DOI: https://doi.org/10.1016/j.brainres.2017.07.026
  • Poil S.S., de Haan W., van der Flier W.M., Mansvelder H.D., Scheltens P. et al. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage//Frontiers in aging neuroscience, 2013, no. 5, pp. 1-12. DOI: https://doi.org/10.3389/fnagi.2013.00058
  • Pornpattananangkul N., Nusslock R. Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards//Neuropsychologia, 2016, no. 91, pp. 141-162. DOI: https://doi.org/10.1016/j.Neuropsychologia.2016.07.037
  • Putman P., Verkuil B., Arias-Garcia E., Pantazi I., van Schie C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention//Cognitive, Affective and Behavioral Neuroscience, 2014, no. 14, pp. 782-791. DOI: https://doi.org/10.3758/s13415-013-0238-7
  • Quaedflieg C.W.E.M., Meyer T., Smeets T. The imaging Maastricht Acute Stress Test (iMAST): A neuroimaging compatible psychophysiological stressor//Psychophysiology, 2013, no. 50, pp. 758-766 DOI: https://doi.org/10.1111/psyp.12058
  • Rhudy J.L., Meagher M.W. Noise stress and human pain thresholds: divergent effects in men and women//Journal of Pain, 2001, no. 2, pp. 57-64 DOI: https://doi.org/10.1054/jpai.2000.19947
  • Sänger J., Bechtold L., Schoofs D., Blaszkewicz M., Wascher E. The influence of acute stress on attention mechanisms and its electrophysiological correlates//Frontiers in Behavioral Neuroscience, 2014, no. 8, pp. 1-13.
  • Sege C.T., Bradley M.M., Lang P.J. Startle modulation during emotional anticipation and perception//Psychophysiology, 2014, no. 10, pp. 977-981 DOI: https://doi.org/10.1111/psyp.12244
  • Schmitz A., Grillon C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test)//Nature Protocols. 2012, no. 3, pp. 527-532 DOI: https://doi.org/10.1038/nprot.2012.001
  • Schneiderman N., Ironson G., Siegel S.D. Stress and health: psychological, behavioral and biological determinants//Annual reviews in clinical psychology, 2005, no. 1, pp. 607-628. DOI: https://doi.org/10.1146/annurev.clinpsy.1.102803.144141
  • Schwabe L., Joëls M., Roozendaal B., Wolf O.T. Stress effect on memory: an update and integration//Neuroscience and biobehavioral reviews, 2012, no. 36, pp. 1740-1749. DOI: https://doi.org/10.1016/j.neubiorev.2011.07.002
  • Shafi M.M., Brandon Westover M., Oberman L., Cash S.S., Pascual-Leone A. Modulation of EEG functional connectivity networks in subjects undergoing repetitive transcranial magnetic stimulation//Brain topography, 2014, no. 1, pp. 172-191. DOI: https://doi.org/10.1007/s10548-013-0277-y
  • Shankman S.A., Gorka S.M. Psychopathology research in the RDoC era: Unanswered questions and the importance of the psychophysiological unit of analysis//International journal of psychophysiology, 2015, no. 98, pp. 330-337. DOI: https://doi.org/10.1016/j.ijpsycho.2015.01.001
  • Shiban Y., Dieme J., Brandl S., Zack R., Mühlberger A., Wüst S. Trier social stress test in vivo and in virtual reality: Dissociation of response domains//International Journal of Psy-chophysiology, 2016, no. 110, pp. 47-55. DOI: https://doi.org/10.1016/j.ijpsycho.2016.10.008
  • Shim M., Im C.H., Lee S.H. Disrupted cortical brain network in post-traumatic stress disorder patients: a resting-state electroencephalographic study//Translational Psychiatry, 2017, no. 9, pp. 1-8 DOI: https://doi.org/10.1038/tp.2017.200
  • Smith E.E., Reznik S.J., Stewart J.L., Allen J.J.B. Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry//International Journal of Psychophysiology, 2017, no. 111, pp. 98-114. DOI: https://doi.org/10.1016/j.ijpsycho.2016.11.005
  • Spronk D., Arns M., Barnett K.J., Cooper N.J., Gordon E. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: A pilot study//Journal of Affective Disorders, 2011, no. 128, pp. 41-48. DOI: https://doi.org/10.1016/j.jad.2010.06.021
  • Staljanssens W., Strobbe G., Van Holen R., Keereman V., Gadeyne S. et al. EEG source connectivity to localize the seizure onset zone in patients with drug resistant epilepsy//NeuroImage: Clinical, 2017, no. 16, pp. 689-698. DOI: https://doi.org/10.1016/j.nicl.2017.09.011
  • Sun Y., Hant S., Sah P.Norepinephrine and corticotropin-releasing hormone: partners in the neural circuits that underpin stress and anxiety//Neuron, 2015, no. 3, pp. 468-470. DOI: https://doi.org/10.1016/j.Neuron.2015.07.022
  • Takahashi T., Cho R.Y., Mizuno T., Kikuchi M., Murata T. et al. Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis//NeuroImage, 2010, no. 51, pp. 173-182. DOI: https://doi.org/10.1016/j.NeuroImage.2010.02.009
  • Thul A., Lechinger J., Donis J., Michitsch G., Pichler G., Kochs E.F. EEG entropy measures indicate decrease of cortical information processing in Disorders of Consciousness//Clinical Neurophysiology, 2016, no. 2, pp. 1419-1427. DOI: https://doi.org/10.1016/j.clinph.2015.07.039
  • Tsuda N., Hayashi K., Hagihira S., Sawa T. Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of alpha-peaks on the electroencephalographic power spectrum//Acta Anaesthesiologica Scandinavica, 2007, no. 4, pp. 472-481. DOI: https://doi.org/10.1111/j.1399-6576.2006.01246.x
  • Ulrich-Lai Y.M., Neural regulation of endocrine and autonomic stress response//Nature reviews neuroscience, 2009, no. 6, pp. 397-409 DOI: https://doi.org/10.1038/nrn2647
  • Vickers K., Jafarpour S., Mofidi A., Rafat B., Woznica A. The 35% carbon dioxide test in stress and panic research: Overview of effects and integration of findings//Clinical Psychology Review, 2012, no. 32, pp. 153-164. DOI: https://doi.org/10.1016/j.cpr.2011.12.004
  • Weinberg A., Sandre A. Distinct associations between low positive affect, panic, and neural responses to reward and threat during late stages of affective picture processing//Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017. (in press). DOI: https://doi.org/10.1016/j.bpsc.2017.09.013
  • Werff S.J., van der Berg S.M., Pannekoek J.N., Elzinga B.M., van der Wee N.J. Neu-roimaging resilience to stress: a review//Frontiers in Behavioral Neuroscience, 2013, no. 7, pp. 1-14.
  • Yang J., Guan L., Hou Y., Yang Y. The time course of psychological stress as revealed by event-related potentials//Neuroscience Letters, 2012, no. 530, pp. 1-6. DOI: https://doi.org/10.1016/j.neulet.2012.09.042
  • Yi L., Xiao-ping L., Xian-hong L., Jing-qi L., Wen-wei Y. et al. Mapping Brain Injury with Symmetrical-channels’ EEG Signal Analysis -A Pilot Study//Scientific reports, 2014, no. 4, pp. 1-7.
  • Zappasod F., Olejarczyk E., Marzetti L., Assenza G., Pizzella V., Tecchio F. Fractal Di-mension of EEG Activity Senses Neuronal Impairment in Acute Stroke//PLOS One, 2014, no. 6, pp. 1-8. DOI: https://doi.org/10.1371/journal.pone.0100199
  • Zunhammer M., Eberle H., Eichhammer P., Busch V. Somatic symptoms evoked by exam stress in university students: the role of alexithymia, neuroticism, anxiety and depression//PLOS One, 2013, no. 12, pp. 1-11. DOI: https://doi.org/10.1371/journal.pone.0084911
Еще
Статья обзорная