Статьи журнала - Информатика и автоматизация (Труды СПИИРАН)

Все статьи: 237

Обнаружение обфусцированных вредоносных программ в Windows с помощью методов ансамблевого обучения

Обнаружение обфусцированных вредоносных программ в Windows с помощью методов ансамблевого обучения

Ядигар Имамвердиев, Эльшан Багиров, Джон Чукву Икечукву

Статья

В эпоху Интернета и смарт-устройств обнаружение вредоносных программ стало важным фактором для безопасности системы. Обфусцированные вредоносные программы создают значительные риски для различных платформ, включая компьютеры, мобильные устройства и устройства IoT, поскольку не позволяют использовать передовые решения для обеспечения безопасности. Традиционные эвристические и сигнатурные методы часто не справляются с этими угрозами. Поэтому была предложена экономически эффективная система обнаружения с использованием анализа дампа памяти и методов ансамблевого обучения. На основе набора данных CIC-MalMem-2022 была оценена эффективность деревьев решений, градиентного бустинга деревьев, логистической регрессии, метода случайного леса и LightGBM при выявлении обфусцированных вредоносных программ. Исследование продемонстрировало превосходство методов ансамблевого обучения в повышении точности и надежности обнаружения. Кроме того, SHAP (аддитивные объяснения Шелли) и LIME (локально интерпретируемые объяснения, не зависящие от устройства модели) использовались для выяснения прогнозов модели, повышения прозрачности и надежности. Анализ выявил важные особенности, существенно влияющие на обнаружение вредоносных программ, такие как службы процессов, активные службы, дескрипторы файлов, ключи реестра и функции обратного вызова. Эти идеи имеют большое значение для совершенствования стратегий обнаружения и повышения производительности модели. Полученные результаты вносят вклад в усилия по обеспечению кибербезопасности путем всесторонней оценки алгоритмов машинного обучения для обнаружения обфусцированных вредоносных программ с помощью анализа памяти. В этой статье представлены ценные идеи для будущих исследований и достижений в области обнаружения вредоносных программ, прокладывая путь для более надежных и эффективных решений в области кибербезопасности перед лицом развивающихся и сложных вредоносных угроз.

Бесплатно

Обоснование и классификация оценочных функций, применяемых в рейтинговых методах многокритериального выбора

Обоснование и классификация оценочных функций, применяемых в рейтинговых методах многокритериального выбора

Станислав Витальевич Микони, Дмитрий Петрович Бураков

Статья

Проанализированы предложенные ранее исследователями рекомендации по применению методов многомерного оценивания объектов. Отмечена слабая обоснованность этих рекомендаций, следующая из поверхностной систематизации методов многомерного оценивания. Рекомендации ориентированы не на классы задач многомерного оценивания объектов, а на различные области человеческой деятельности. Однако в каждой сфере человеческой деятельности имеет место широкий спектр задач оценивания объектов различной природы. В связи с этим признана актуальность более тщательной систематизации методов многомерного оценивания. Учитывая разноплановость методов многомерного оценивания, решено ограничиться систематизацией методов, применяющих оценочные функции, и на этой основе предложить общие рекомендации по их применению. Обзор методов многомерного оценивания с единой позиции потребовал уточнения применяемой в них терминологии. На основе формальной модели установлены отношения между понятиями «предпочтение», «критерий» и «показатель». Для выделения методов, применяющих оценочные функции, введено понятие целевого значения показателя. Относительно его расположения на шкале показателя введены понятия идеальной и реальной целей. Соответствующие этим целям критерии разделены на целевые и ограничительные. С применением предложенной терминологии проанализированы наиболее известные методы многомерного оценивания. Из них выделена группа методов, применяющих оценочные функции. Рассмотрены варианты оценочных функций, создаваемых на основе критерия и постулатов теории ценности и полезности. На основе сходства областей определения и значений различных оценочных функций установлена взаимосвязь между ними. Относительно целевого значения показателя они разделены на функции достижения цели и функции отклонения от цели. Показана взаимная дополнительность этих функций. Выделена группа функций отклонения от цели, которая позволяет упорядочивать объекты раздельно по штрафам и поощрениям относительно достижения реальной цели. Для отношения соответствия введено понятие нормы. На примере медицинских анализов показано практическое применение функций отклонения от нормы с применением как минимаксной, так и средневзвешенной обобщающей функции для установления рейтинга на множестве объектов. Выявленное в процессе исследования сходство и различие оценочных функций положено в основу классификации использующих их методов многомерного оценивания. Различие оценочных функций по трудоемкости их создания отражено в предложенной методике их применения.

Бесплатно

Оппортунистическая маршрутизация на основе гибридной оптимизации с учетом спектра для самоорганизующихся сетей когнитивной радиосвязи

Оппортунистическая маршрутизация на основе гибридной оптимизации с учетом спектра для самоорганизующихся сетей когнитивной радиосвязи

Хишам Мохамед Али Абдулла, А.В. Сентхил Кумар, Аммар Абдулла Касем Ахмед, Мохаммед Абдуллатеф Саид Мослех

Статья

Оппортунистическая маршрутизация повысила эффективность и надежность в самоорганизующихся сетях когнитивной радиосвязи (CRAHN). Многие исследователи разработали модели оппортунистической маршрутизации, в том числе модель оппортунистической маршрутизации на базе карты спектра (SMOR), которая считается более эффективной моделью в этой области. Однако в SMOR существуют определенные ограничения, которые требуют внимания и устранения. В данной статье рассматривается проблема задержки и ухудшения коэффициента доставки пакетов из-за неучета пропускной способности сети. Чтобы решить эти проблемы, в базовой модели маршрутизации SMOR используется гибридный алгоритм оптимизации, состоящий из алгоритмов оптимизации Firefly и Grey Wolf. Разработанная таким образом гибридная модель маршрутизации SMOR на основе оптимизации Firefly и Grey-Wolf (HFGWOSMOR) повышает производительность за счет высокой локальной и глобальной поисковой оптимизации. Первоначально анализируется взаимосвязь между задержкой и пропускной способностью, а затем устанавливается совместная многолучевая связь. Предлагаемая модель маршрутизации также вычисляет значения энергии принимаемых сигналов в пределах порога полосы пропускания и периода времени, и, следовательно, проблемы с производительностью, обнаруженные в SMOR, решаются. Чтобы оценить её эффективность, предложенная модель сравнивается со SMOR и другими существующими моделями оппортунистической маршрутизации, которые показывают, что предлагаемая модель HFGWOSMOR работает лучше, чем другие модели.

Бесплатно

Оптимальная нелинейная фильтрация оценок информационного воздействия в стохастической модели информационного противоборства

Оптимальная нелинейная фильтрация оценок информационного воздействия в стохастической модели информационного противоборства

Иван Сергеевич Полянский, Кирилл Олегович Логинов

Статья

В статье разработано вычислительно эффективное алгоритмическое решение задачи оптимальной нелинейной фильтрации оценок информационного воздействия в обобщенной стохастической модели информационного противоборства. Сформированное решение применимо при наличии разнородных правил измерения параметров модели информационного противоборства, на основании которых формируется пара систем стохастических дифференциальных уравнений. Оценка информационного воздействия в модели оптимальной нелинейной фильтрации выполняется по критерию максимального правдоподобия по определяемой эволюции апостериорной условной функции плотности вероятности на заданном интервале наблюдения. Нахождение апостериорной условной функции плотности вероятности в заданный момент времени осуществляется с учетом теоремы сложения вероятностей, как вероятность суммы двух совместных событий, функции плотности которых устанавливаются из численного решения соответствующих робастных уравнений Дункана-Мортенсена-Закаи. Для первого события полагается, что первая система стохастических дифференциальных уравнений является уравнением состояния, а вторая - уравнением наблюдения. Для второго события устанавливается их определение в обратном порядке. Решение робастного уравнения Дункана-Мортенсена-Закаи выполнено в постановке спектрального метода Галёркина при дискретизации интервала наблюдения на подынтервалы и сведении исходного решения к численному рекуррентному исследованию последовательности подзадач по так называемому Yau-Yau’s алгоритму, предполагающему оценку вероятностной меры из решения прямого уравнения Колмогорова при ее последующей коррекции по наблюдению. Для выделения особенностей алгоритмической реализации составленного решения сформирован алгоритм оптимальной нелинейной фильтрации оценок информационного воздействия в обобщенной стохастической модели информационного противоборства при уточнении листинга исполняющей его функции, который представлен псевдокодом. Для выявления предпочтительности составленного алгоритмического решения по оптимальной нелинейной фильтрации оценок информационного воздействия проведена серия вычислительных экспериментов на тестовых выборках большого объема. Результат оценки информационного воздействия, получаемый по предложенному алгоритму, сравнен с определяемым решением: 1) по средневыборочным значением из моделей наблюдения; 2) ансамблевым расширенным фильтром Калмана; 3) алгоритмом фильтрации, предполагающим численное исследование уравнения Дункана-Мортенсена-Закаи. По проведенному апостериорному исследованию выделены количественные показатели, устанавливающие выигрыш составленного алгоритма и границы его применимости.

Бесплатно

Оптимизационный подход к выбору методов обнаружения аномалий в однородных текстовых коллекциях

Оптимизационный подход к выбору методов обнаружения аномалий в однородных текстовых коллекциях

Федор Владимирович Краснов, Ирина Сергеевна Смазневич, Елена Николаевна Баскакова

Статья

Рассматривается задача обнаружения аномальных документов в текстовых коллекциях. Существующие методы выявления аномалий не универсальны и не показывают стабильный результат на разных наборах данных. Точность результатов зависит от выбора параметров на каждом из шагов алгоритма, и для разных коллекций оптимальны различные наборы параметров. Не все из существующих алгоритмов обнаружения аномалий эффективно работают с текстовыми данными, векторное представление которых характеризуется большой размерностью при сильной разреженности. Задача поиска аномалий рассматривается в следующей постановке: требуется проверить новый документ, загружаемый в прикладную интеллектуальную информационную систему (ПИИС), на соответствие хранящейся в ней однородной коллекции документов. В ПИИС, обрабатывающих юридически значимые документы, на методы обнаружения аномалий накладываются следующие ограничения: высокая точность, вычислительная эффективность, воспроизводимость результатов, а также объяснимость решения. Исследуются методы, удовлетворяющие этим условиям. В работе изучается возможность оценки текстовых документов по шкале аномальности путем внедрения в коллекцию заведомо инородного документа. Предложена стратегия обнаружения в документе новизны по отношению к коллекции, предполагающая обоснованный подбор методов и параметров. Показано, как на точность решения влияет выбор вариантов векторизации, принципов токенизации, методов снижения размерности и параметров алгоритмов поиска аномалий. Эксперимент проведен на двух однородных коллекциях нормативно-технических документов: стандартов в отношении информационных технологий и в сфере железных дорог. Использовались подходы: вычисление индекса аномальности как расстояния Хеллингера между распределениями близости документов к центру коллекции и к инородному документу; оптимизация алгоритмов поиска аномалий в зависимости от методов векторизации и снижения размерности. Векторное пространство строилось с помощью преобразования TF-IDF и тематического моделирования ARTM. Тестировались алгоритмы Isolation Forest (изолирующий лес), Local Outlier Factor (локальный фактор выброса), OneClass SVM (вариант метода опорных векторов). Эксперимент подтвердил эффективность предложенной оптимизационной стратегии для определения подходящего метода обнаружения аномалий для заданной текстовой коллекции. При поиске аномалии в рамках тематической кластеризации юридически значимых документов эффективен метод изолирующего леса. При векторизации документов по TF-IDF целесообразно подобрать оптимальные параметры словаря и использовать метод опорных векторов с соответствующей функцией преобразования признакового пространства.

Бесплатно

Оптимизация размера ансамбля регрессоров

Оптимизация размера ансамбля регрессоров

Юрий Александрович Зеленков

Статья

Алгоритмы обучения ансамблей, такие как bagging, часто генерируют неоправданно большие композиции, которые, помимо потребления вычислительных ресурсов, могут ухудшить обобщающую способность. Обрезка (pruning) потенциально может уменьшить размер ансамбля и повысить точность; однако большинство исследований сегодня сосредоточены на использовании этого подхода при решении задачи классификации, а не регрессии. Это связано с тем, что в общем случае обрезка ансамблей основывается на двух метриках: разнообразии и точности. Многие метрики разнообразия разработаны для задач, связанных с конечным набором классов, определяемых дискретными метками. Поэтому большинство работ по обрезке ансамблей сосредоточено на таких проблемах: классификация, кластеризация и выбор оптимального подмножества признаков. Для проблемы регрессии гораздо сложнее ввести метрику разнообразия. Фактически, единственной известной на сегодняшний день такой метрикой является корреляционная матрица, построенная на предсказаниях регрессоров. Данное исследование направлено на устранение этого пробела. Предложено условие, позволяющее проверить, включает ли регрессионный ансамбль избыточные модели, т. е. модели, удаление которых улучшает производительность. На базе этого условия предложен новый алгоритм обрезки, который основан на декомпозиции ошибки ансамбля регрессоров на сумму индивидуальных ошибок регрессоров и их рассогласованность. Предложенный метод сравнивается с двумя подходами, которые напрямую минимизируют ошибку путем последовательного включения и исключения регрессоров, а также с алгоритмом упорядоченного агрегирования (Ordered Aggregation). Эксперименты подтверждают, что предложенный метод позволяет уменьшить размер ансамбля регрессоров с одновременным улучшением его производительности и превосходит все сравниваемые методы.

Бесплатно

Основанный на генетическом подходе алгоритм внутрикодирования для H.266/VVC

Основанный на генетическом подходе алгоритм внутрикодирования для H.266/VVC

Мурудж Халид Ибрагим Ибрагим, Аль-Хафаджи Исраа М. Абдаламир, Аль-Аззави Зобеда Хатиф Наджи

Статья

Представлен генетический подход для оптимизации внутреннего кодирования в H.266/VVC. Предлагаемый алгоритм эффективно выбирает инструменты кодирования и многотипные древовидные разбиения (MTT) для достижения баланса между временем кодирования и качеством видео. Функция оценки пригодности, которая объединяет показатели восприятия и эффективности кодирования, используется для оценки качества каждого возможного решения. Результаты демонстрируют значительное сокращение времени кодирования без ущерба для качества видео. Предлагаемый алгоритм выбирает инструменты кодирования из набора доступных инструментов в H.266/VVC. Эти инструменты включают режимы внутреннего прогнозирования, единицы преобразования, параметры квантования и режимы энтропийного кодирования. Схема разбиения MTT включает четыре типа разбиений: квадродерево, двоичное дерево, троичное дерево и квадро-двоичное дерево. Показатели восприятия используются для оценки визуального качества закодированного видео. Показатели эффективности кодирования используются для оценки эффективности кодирования закодированного видео. Функция оценки пригодности объединяет показатели восприятия и показатели эффективности кодирования для оценки качества каждого возможного решения.

Бесплатно

Открытие чёрного ящика: Извлечение семантических факторов Осгуда из языковой модели word2vec

Открытие чёрного ящика: Извлечение семантических факторов Осгуда из языковой модели word2vec

Илья Алексеевич Суров

Статья

Современные модели искусственного интеллекта развиваются в парадигме чёрного ящика, когда значима только информация на входе и выходе системы, тогда как внутренние представления интерпретации не имеют. Такие модели не обладают качествами объяснимости и прозрачности, необходимыми во многих задачах. Статья направлена на решение данной проблемы путём нахождения семантических факторов Ч. Осгуда в базовой модели машинного обученния word2vec, представляющей слова естественного языка в виде 300-мерных неинтерпретируемых векторов. Искомые факторы определяются на основе восьми семантических прототипов, составленных из отдельных слов. Ось оценки в пространстве word2vec находится как разность между положительным и отрицательным прототипами. Оси силы и активности находятся на основе шести процессно-семантических прототипов (восприятие, анализ, планирование, действие, прогресс, оценка), представляющих фазы обобщённого кругового процесса в данной плоскости. Направления всех трёх осей в пространстве word2vec найдены в простой аналитической форме, не требующей дополнительного обучения. Как и ожидается для независимых семантических факторов, полученные направления близки к попарной ортогональности. Значения семантических факторов для любого объекта word2vec находятся с помощью простой проективной операции на найденные направления. В соответствии с требованиями к объяснимому ИИ, представленный результат открывает возможность для интерпретации содержимого алгоритмов типа "чёрный ящик'' в естественных эмоционально-смысловых категориях. В обратную сторону, разработанный подход позволяет использовать модели машинного обучения в качестве источника данных для когнитивно-поведенческого моделирования.

Бесплатно

Оценивание информативности признаков в наборах данных для проведения продлённой аутентификации

Оценивание информативности признаков в наборах данных для проведения продлённой аутентификации

Сергей Андреевич Давыденко, Евгений Юрьевич Костюченко, Сергей Николаевич Новиков

Статья

Продлённая аутентификация позволяет избавиться от недостатков, присущих статической аутентификации, например, идентификаторы могут быть потеряны или забыты, пользователь совершает только первоначальный вход в систему, что может быть опасно не только для областей, требующих обеспечения высокого уровня безопасности, но и для обычного офиса. Динамическая проверка пользователя во время всего сеанса работы может повысить безопасность системы, поскольку во время работы пользователь может подвергнуться воздействию со стороны злоумышленника (например, быть атакованным) или намеренно передать ему права. В таком случае оперировать машиной будет не пользователь, который выполнил первоначальный вход. Классификация пользователей во время работы системы позволит ограничить доступ к важным данным, которые могут быть получены злоумышленником. Во время исследования были изучены методы и наборы данных, использующихся для продлённой аутентификации. Затем был сделан выбор наборов данных, которые использовались в дальнейшем исследовании: данные о движении смартфона и смарт-часов (WISDM) и динамике активности мыши (Chao Shen’s, DFL, Balabit). Помочь улучшить результаты работы моделей при классификации может предварительный отбор признаков, например, через оценивание их информативности. Уменьшение размерности признаков позволяет снизить требования к устройствам, которые будут использоваться при их обработке, повысить объём перебора значений параметров классификаторов при одинаковых временных затратах, тем самым потенциально повысить долю правильных ответов при классификации за счёт более полного перебора параметров значений. Для оценивания информативности использовались метод Шеннона, а также алгоритмы, встроенные в программы для анализа данных и машинного обучения (WEKA: Machine Learning Software и RapidMiner). В ходе исследования были выполнены расчёты информативности каждого признака в выбранных для исследования наборах данных, затем с помощью RapidMiner были проведены эксперименты по классификации пользователей с последовательным уменьшением количества используемых при классификации признаков с шагом в 20%. В результате была сформирована таблица с рекомендуемыми наборами признаков для каждого набора данных, а также построены графики зависимостей точности и времени работы различных моделей от количества используемых при классификации признаков.

Бесплатно

Оценка возможностей орбитальных оптических средств по получению информации о космических объектах

Оценка возможностей орбитальных оптических средств по получению информации о космических объектах

Валерий Ярославович Пророк, Анатолий Александрович Карытко, Александр Сергеевич Горянский, Екатерина Сергеевна Емельянова

Статья

Цель исследования заключается в выборе оптимальных условий сбора некоординатной информации о космическом объекте орбитальным оптическим средством при прохождении обоими объектами окрестностей точек минимального расстояния между их орбитами. Для достижения указанной цели предложен количественный показатель, характеризующий меру возможности получения некоординатной информации о космическом объекте с требуемым уровнем качества. Аргументами функции, характеризующей вводимый показатель, являются: расстояние между объектами; относительная скорость объектов; фазовый угол освещенности космического объекта Солнцем по отношению к оптико-электронному средству; длительность интервала времени, в течение которого оба объекта находятся в окрестности точки минимума расстояния между их орбитами. Расчет величины показателя обеспечивается решением трех частных задач исследования. Первая задача – поиск окрестностей, включающих минимальные расстояния между орбитами космического объекта и орбитального оптического средства. Для ее решения используется быстрый алгоритм расчета минимального расстояния между орбитами, при этом осуществляется прогноз дрейфа найденных окрестностей на интервале времени до 60 часов. Вторая задача – оценка характеристик движения и условий оптической видимости космического объекта в окрестностях точек минимума расстояния между его орбитой и орбитой оптического средства. Решение данной задачи осуществляется средствами имитационного моделирования с использованием библиотеки прогноза движения космических объектов SGP4. Третья задача – обоснование и расчет показателя, характеризующего меру возможности получения некоординатной информации о космическом объекте. Для решения данной задачи разработана система правил нечеткого логического вывода, которая используется в качестве входных данных алгоритма Мамдани. Рассматриваемая методика реализована программно, в ходе вычислительного эксперимента проведена оценка возможности получения некоординатной информации по низкоорбитальным и геостационарным космическим объектам. Применение предложенного показателя обеспечивает повышение результативности процедуры сбора некоординатной информации о космических объектах за счет выбора наиболее информативных альтернатив контроля космических объектов из доступного множества возможных наблюдений на заданном интервале планирования сбора информации о космических объектах.

Бесплатно

Оценка методов скелетизации двумерных бинарных изображений

Оценка методов скелетизации двумерных бинарных изображений

Шади Ибрагим Абудальфа

Статья

В сфере современной обработки изображений упор часто делается на инженерные подходы, а не на научные решения разнообразных практических задач. Одна из распространенных задач в этой области включает скелетирование бинарных изображений. Скелетонизация — это мощный процесс извлечения скелета объектов, находящихся в цифровом бинарном изображении. Этот процесс широко используется для автоматизации многих задач в различных областях, таких как распознавание образов, техническое зрение, анимация и анализ изображений. Существующие методы скелетизации в принципе основаны на трех подходах: эрозии границ, дистанционном кодировании и диаграмме Вороного для идентификации приблизительного скелета. В работе представлены результаты эмпирического оценивания набора хорошо известных методов. Затем выполнен расчет скелетов в двумерном бинарном изображении c выбором различных подходов и оценкой их эффективности. Визуальная оценка – это основной метод, используемый для демонстрации производительности выбранных алгоритмов скелетирования. Из-за отсутствия окончательного определения «истинного» скелета цифрового объекта точная оценка эффективности алгоритмов скелетирования представляет собой серьезную исследовательскую задачу. Были попытки проведения количественной оценки, однако применяемые меры обычно адаптировали для конкретных областей. Экспериментальные результаты, показанные в этой работе, иллюстрируют эффективность трех основных подходов к скелетизации изображений в различных перспективных приложениях.

Бесплатно

Оценка области просмотра с использованием обучения с подкреплением для потоковой передачи видео в формате 360 градусов

Оценка области просмотра с использованием обучения с подкреплением для потоковой передачи видео в формате 360 градусов

Нгуен Вьет Хунг, Фам Тянь Дат, Нгуен Тан, Нгуен Ань Куан, Ле Тхи Хуэйен Транг, Ле Май Нам

Статья

Видеоконтент в формате 360 градусов стал ключевым компонентом в средах виртуальной реальности, предлагая зрителям захватывающий и увлекательный опыт. Однако потоковая передача такого комплексного видеоконтента сопряжена со значительными трудностями, обусловленными существенными размерами файлов и переменчивыми сетевыми условиями. Для решения этих проблем в качестве перспективного решения, направленного на снижение нагрузки на пропускную способность сети, появилась адаптивная потоковая передача просмотра. Эта технология предполагает передачу видео более низкого качества для периферийных зон просмотра, а высококачественный контент – для конкретной зоны просмотра, на которую активно смотрит пользователь. По сути, это требует точного прогнозирования направления просмотра пользователя и повышения качества этого конкретного сегмента, что подчеркивает значимость адаптивной потоковой передачи просмотра (VAS). Наше исследование углубляется в применение методов пошагового обучения для прогнозирования оценок, требуемых системой VAS. Таким образом, мы стремимся оптимизировать процесс потоковой передачи, обеспечивая высокое качество отображения наиболее важных фрагментов видео. Кроме того, наш подход дополняется тщательным анализом поведения движений головы и лица человека. Используя эти данные, мы разработали модель обучения с подкреплением, специально предназначенную для прогнозирования направлений взгляда пользователя и повышения качества изображения в целевых областях. Эффективность предлагаемого нами метода подтверждается нашими экспериментальными результатами, которые показывают значительные улучшения по сравнению с существующими эталонными методами. В частности, наш подход повышает метрику прецизионности на значения в диапазоне от 0,011 до 0,022. Кроме того, он снижает среднеквадратичную ошибку (RMSE) в диапазоне от 0,008 до 0,013, среднюю абсолютную ошибку (MAE) – от 0,012 до 0,018 и оценку F1 – от 0,017 до 0,028. Кроме того, мы наблюдаем увеличение общей точности с 2,79 до 16,98. Эти улучшения подчеркивают потенциал нашей модели для значительного улучшения качества просмотра в средах виртуальной реальности, делая потоковую передачу видео на 360 градусов более эффективной и удобной для пользователя.

Бесплатно

Оценка рисков информационной безопасности в отраслевой информационной системе на основе теории нечетких множеств и искусственной нейронной сети

Оценка рисков информационной безопасности в отраслевой информационной системе на основе теории нечетких множеств и искусственной нейронной сети

Амануэль Эстифанос Асфха, Абхишек Вайш

Статья

Оценка рисков информационной безопасности является важнейшим компонентом методов промышленного менеджмента, который помогает выявлять, количественно определять и оценивать риски в сравнении с критериями принятия рисков и целями, относящимися к организации. Благодаря своей способности комбинировать несколько параметров для определения общего риска традиционный метод оценки рисков, основанный на нечетких правилах, используется во многих отраслях промышленности. Этот метод имеет недостаток, поскольку он используется в ситуациях, когда необходимо оценить несколько параметров, и каждый параметр выражается различным набором лингвистических фраз. В этой статье представлены теория нечетких множеств и модель прогнозирования рисков с использованием искусственной нейронной сети (ANN), которые могут решить рассматриваемую проблему. Также разработан алгоритм, который может изменять факторы, связанные с риском, и общий уровень риска с нечеткого свойства на атрибут с четким значением. Система была обучена с использованием двенадцати выборок, представляющих 70%, 15% и 15% набора данных для обучения, тестирования и валидации соответственно. Кроме того, также была разработана пошаговая регрессионная модель, и ее результаты сравниваются с результатами ANN. С точки зрения общей эффективности, модель ANN (R2= 0,99981, RMSE=0,00288 и MSE=0,00001) показала лучшую производительность, хотя обе модели достаточно удовлетворительны. Делается вывод, что модель ANN, прогнозирующая риск, может давать точные результаты до тех пор, пока обучающие данные учитывают все мыслимые условия.

Бесплатно

Памяти Александрова Виктора Васильевича

Памяти Александрова Виктора Васильевича

-

Статья

10 сентября 2024 г. исполнилось 85 лет со дня рождения Виктора Васильевича Александрова, блестящего ученого, заслуженного деятеля науки Российской Федерации, доктора технических наук, профессора.

Бесплатно

Памяти Пономарёва Валентина Михайловича

Памяти Пономарёва Валентина Михайловича

-

Статья

1 сентября 2024 года исполнилось 100 лет со дня рождения Валентина Михайловича Пономарева, доктора технических наук, профессора, создателя и первого директора Санкт-Петербургского института информатики и автоматизации Российской академии наук, выдающегося ученого, талантливого педагога, организатора, руководителя и участника крупнейших фундаментальных и прикладных исследований в области теории оптимального управления, создания и повышения эффективности систем управления крылатых и баллистических ракет, космических аппаратов и маневрирующих головных частей, развития вычислительных систем и сетей, автоматизированных систем научных исследований и интегрированных автоматизированных производственных систем, результаты которых явились важным вкладом в отечественную и мировую науку, экономику и образование страны, ее безопасность и развитие международных научных связей.

Бесплатно

Периодограммная оценка спектральной плотности мощности на основе бинарно-знакового стохастического квантования сигналов с использованием оконных функций

Периодограммная оценка спектральной плотности мощности на основе бинарно-знакового стохастического квантования сигналов с использованием оконных функций

Владимир Николаевич Якимов

Статья

Спектральный анализ сигналов используется как один из основных методов исследования систем и объектов различной физической природы. В условиях статистической неопределенности сигналы подвергаются случайным изменениям и зашумлениям. Анализ таких сигналов приводит к необходимости оценивания спектральной плотности мощности (СПМ). На практике для её оценивания широко используется периодограммный метод. Основу цифровых алгоритмов, реализующих этот метод, составляет дискретное преобразование Фурье. В этих алгоритмах операции цифрового умножения являются массовыми операциями. Применение оконных функций ведет к увеличению числа этих операций. Операции умножения относятся к наиболее трудоемким операциям. Они являются доминирующим фактором при определении вычислительных возможностей алгоритма и определяют его мультипликативную сложность. В статье рассматривается задача снижения мультипликативной сложности вычисления периодограммной оценки СПМ с применением оконных функций. Задача решается на основе использования бинарно-знакового стохастического квантования для преобразования сигнала в цифровую форму. Такое двухуровневое квантование сигналов осуществляется без систематической погрешности. На основе теории дискретно-событийного моделирования, результат бинарно-знакового стохастического квантования во времени рассматривается как хронологическая последовательность существенных событий, определяемых сменой его значений. Использование дискретно-событийной модели для результата бинарно-знакового стохастического квантования обеспечило аналитическое вычисление операций интегрирования при переходе от аналоговой формы периодограммной оценки СПМ к математическим процедурам ее вычисления в дискретном виде. Эти процедуры стали основой для разработки цифрового алгоритма. Основными вычислительными операциями алгоритма являются арифметические операции сложения и вычитания. Уменьшение количества операций умножения снижает общую вычислительную трудоемкость оценивания СПМ. С целью исследования работы алгоритма были проведены численные эксперименты. Они осуществлялись на основе имитационного моделирования дискретно-событийной процедуры бинарно-знакового стохастического квантования. В качестве примера приведены результаты вычисления оценок СПМ с применением ряда наиболее известных оконных функций. Полученные результаты свидетельствуют, что использование разработанного алгоритма позволяет вычислять периодограммные оценки СПМ с высокой точностью и частотным разрешением в условиях присутствия аддитивного белого шума при низком отношении сигнал/шум. Практическая реализация алгоритма осуществлена в виде функционально самостоятельного программного модуля. Данный модуль может использоваться как отдельный компонент в составе комплексного метрологически значимого программного обеспечения для оперативного анализа частотного состава сложных сигналов.

Бесплатно

Перформативная платформа и ее применение для высокотехнологичного образовательного сообщества

Перформативная платформа и ее применение для высокотехнологичного образовательного сообщества

Нектариос Мамуцис, Яннис Сифакис, Ставрос Христодулакис, Десислава Панева-Маринова, Лилия Павлова

Статья

В этой статье используется всеохватывающая концепция сообществ для выражения социальных контекстов, в которых осуществляется человеческое творчество и происходит обучение. С появлением цифровых технологий эти социальные контексты, сообщества, в которых мы задействованы, радикально меняются. Новый ландшафт, созданный цифровыми технологиями, характеризуется новыми качествами, новыми возможностями для действий сообществ. Термин onlife заимствован из Манифеста Onlife и используется для обозначения сообществ нового типа, созданных современными цифровыми технологиями - сообществ onlife. Представлены принципы проектирования, направленные на развитие таких сообществ и поддержку их членов. Эти принципы составляют основу, которая подчеркивает концепцию перформативности, то есть то, что знания основаны на деятельности человека и действиях, выполняемых в определенных социальных контекстах, а не на развитии концептуальных представлений. Чтобы продемонстрировать использование структуры и соответствующих принципов, в статье представлено, как их можно использовать для анализа, оценки и переформулирования конкретной системы, относя ее к творчеству и обучению в области культурного наследия (преподавание и изучение истории). Одним из наиболее значительных результатов является принятие принципов, которые облегчают вовлечение студентов в учебный процесс, переходя от роли конечного пользователя к роли эксперта-пользователя при поддержке так называемых maieuta-дизайнеров. Результатом этого процесса является использование изученного программного обеспечения не только для потребления готового контента, но и для создания нового, сгенерированного студентами контента, предлагающего студентам новые возможности для обучения. Как показывает оценка, эти новые возможности обучения позволяют студентам развивать более глубокое понимание изучаемых тем.

Бесплатно

Повышение достоверности выявления аномалий на изображениях при формировании их векторов признаков в базисах вейвлетов

Повышение достоверности выявления аномалий на изображениях при формировании их векторов признаков в базисах вейвлетов

Сергей Викторович Дворников, Дина Владимировна Васильева

Статья

Предложен способ обнаружения спасательных плотов и шлюпок в акватории морей и океанов после кораблекрушений, основанный на распознавании аномалий на обрабатываемых изображениях, что увеличивает вероятность распознавания объектов мониторинга. Обоснован подход к решению такой задачи. Представлена постановка задачи распознавания объектов с позиций бинарной классификации при обнаружении аномалий. Получено аналитическое выражение для алгоритма принятия решения. Рассмотрена возможность формализации матриц изображений в виде гистограмм распределений интенсивности цветности (яркости). Оценена контрастность признакового пространства на их основе. Предложено повысить контрастность признаковых пространств за счет вторичной обработки гистограмм распределений в базисе кратномасштабной вейвлет-декомпозиции. Рассмотрена возможность реализации вейвлет-преобразований на основе функций Хаара и вейвлетов Гаусса 1-го и 2-го порядков. Обоснован механизм формирования вторичных векторов признаков из трехмерных вейвлет-преобразований, путем усреднения их коэффициентов по оси временного сдвига. Показано, что при одинаковой размерности гистограмм распределения яркости с вновь формируемыми векторами признаков, последние обеспечивают более высокую контрастность признаковых пространств. Рекомендовано для формализации изображений в формате jpeg использовать вейвлет Гаусса 2-го порядка, обеспечивающий при прочих равных условиях большую величину различий для изображений, содержащих аномалии. Разработан подход к вероятностной оценке алгоритма автоматического распознавания изображений. Получено аналитическое выражение и обоснованы его составляющие элементы. Приведены графические зависимости вероятности правильного обнаружения (распознавания) аномалий, в зависимости от размеров по отношению к общей площади кадра и дисперсии подстилающего фона. Представлены результаты эксперимента по распознаванию изображений со спасательной шлюпкой в акватории океана. Определены направления дальнейших исследований.

Бесплатно

Повышение точности IP-геолокации на основе данных, предоставляемых открытыми IP-геосервисами

Повышение точности IP-геолокации на основе данных, предоставляемых открытыми IP-геосервисами

Максим Владимирович Иванов, Александр Александрович Полунин

Статья

IP-геолокация – это процесс определения реального географического положения электронного устройства, подключенного к сети Интернет, по его глобальному сетевому адресу [1]. В настоящее время она нашла широкое применение в интернет-торговле, маркетинге и рекламе, информационной безопасности [2] и других направлениях человеческой деятельности. Применяются различные подходы к определению местоположения удаленного сетевого устройства, различающиеся как по типу анализируемой информации (задержка передачи пакетов, ресурсные записи DNS-серверов, контент веб-страниц), так и по выдаваемому результату (название страны или города, почтовый адрес, вероятная зона расположения или точные координаты) [3, 4]. Ошибка IP-геолокации зависит от страны расположения устройства, плотности населения, типа сетевого устройства и лежит в пределах от нескольких десятков метров до сотен километров. При этом для одних и тех же входных данных результаты разных IP-геосервисов могут различаться значительно. Объектом данного исследования выступают общедоступные IP-геосервисы, предоставляющие услуги по IP-геопривязке узлов глобальной сети на основе их IP-адресов, а именно – их точность и полнота. Выборка IP-геосервисов для тестирования были сформирована из числа наиболее популярных [5]. При проведении исследования результаты IP-геолокации сравнивались с достоверными сведениями о расположении некоторых IP-адресов, в качестве показателей точности использовались страна, город и географические координаты. На основе сравнительного анализа результатов тестирования были сделаны выводы о точности IP-геосервисов по выбранным показателям, их существенных свойствах, а также о зависимости ошибки геолокации от размера населенного пункта. Для повышения точности IP-геопривязки авторами предложен ансамблевый метод усреднения координат, полученных от нескольких IP-геосервисов.

Бесплатно

Журнал