К вопросу о нейротропности и нейроинвазивности коронавирусов

Автор: Войтенков Владислав Борисович, Екушева Евгения Викторовна

Журнал: Клиническая практика @clinpractice

Рубрика: Обзоры

Статья в выпуске: 2 т.11, 2020 года.

Бесплатный доступ

В настоящий момент развития ситуации с инфекцией COVID-19 можно делать предварительные выводы относительно непосредственных и отдаленных последствий этого заболевания. В обзоре литературных данных мы предполагаем, что для вируса SARS-CoV-2, как и для ряда других вирусов семейства Coronaviridae, характерны нейротропность и нейроинвазивность с интраназальным путем доступа, который считается наиболее опасным с точки зрения дальнейшего развития неврологических осложнений с поражением клеток дыхательного центра. Кроме того, лекарственные средства для интраназального применения, обладающие местными иммуномодулирующими и противовирусными свойствами, могут рассматриваться в качестве возможных методов профилактики и терапии лиц, контактирующих с пациентами, инфицированных COVID-19, что требует дальнейшего углубленного изучения. Возможным объяснением развития дыхательной недостаточности у ряда пациентов является угнетение дыхательного центра, что также нуждается в дальнейшем подробном изучении с проведением рандомизированных экспериментальных, клинических и патоморфологических исследований.

Еще

Коронавирусы, интраназальный путь, неврологические осложнения, сoronaviruses

Короткий адрес: https://sciup.org/143172656

IDR: 143172656   |   DOI: 10.17816/clinpract34890

Список литературы К вопросу о нейротропности и нейроинвазивности коронавирусов

  • Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. DOI: 10.1016/j.ijantimicag.2020.105924
  • Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552-555. DOI: 10.1002/jmv.25728
  • Al-Tawfiq JA. Viral loads of SARS-CoV, MERS-CoV and SARS-CoV-2 in respiratory specimens: What have we learned? Travel Med Infect Dis. 2020;34:101629. DOI: 10.1016/j.tmaid.2020.101629
  • Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;12(2):135. DOI: 10.3390/v12020135
  • Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-137. DOI: 10.1111/resp.13196
  • Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. viruses. 2019;11(1):59.
  • DOI: 10.3390/v11010059
  • Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-637.
  • DOI: 10.1002/path.1570
  • Boonacker E, van Noorden CJ. The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol. 2003;82(2):53-73.
  • DOI: 10.1078/0171-9335-00302
  • Ding Y, Wang H, Shen H, Li Z. The clinical pathology of severe acute respiratorysyndrome (SARS): a report from China. J Pathol. 2003;200(3):282-289.
  • DOI: 10.1002/path.1440
  • To KF, Lo AW. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 2004;203(3):740-743.
  • DOI: 10.1002/path.1597
  • Yuan Y, Cao D, Zhang Y, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017;8:15092.
  • DOI: 10.1038/ncomms15092
  • Yu F, Du L, Ojcius DM, et al. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect. 2020;22(2):74-79.
  • DOI: 10.1016/j.micinf.2020.01.003
  • Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-7275.
  • DOI: 10.1128/JVI.00737-08
  • Desforges M, Le Coupanec А, Dubeau P, et al. Human Coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? viruses. 2019;12(1):14.
  • DOI: 10.3390/v12010014
  • Atluri, VS, Hidalgo M, Samikkannu T, et al. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: An update. Front Cell Neurosci. 2015;9:212.
  • DOI: 10.3389/fncel.2015.00212
  • Neal JW. Flaviviruses are neurotropic, but how do they invade the CNS? J Infect. 2014;69(3):203-215.
  • DOI: 10.1016/j.jinf.2014.05.010
  • Couderc T, Chretien F, Schilte C, et al. A mouse model for Chikungunya: Young age and inecient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008;4(2):e29.
  • DOI: 10.1371/journal.ppat.0040029
  • Войтенков В.Б., Екушева Е.В., Скрипченко Н.В., и др. Вирус Зика и поражение нервной системы // Инфекционные болезни. - 2019. - Т.17. - №1. - С. 153-156.
  • DOI: 10.20953/1729-9225-2019-1-153-156
  • Schneider H, Weber CE, Schoeller J, Steinmann U. Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier. Virus Res. 2012;170(1-2):66-74.
  • DOI: 10.1016/j.virusres.2012.08.019
  • Choi SM, Xie H, Campbell AP, Kuypers J. Influenza viral RNA detection in blood as a marker to predict disease severity in hematopoietic cell transplant recipients. J Infect Dis. 2012;206(12):1872-1877.
  • DOI: 10.1093/infdis/jis610
  • Imamura T, Suzuki A, Lupisan S, et al. Detection of enterovirus 68 in serum from pediatric patients with pneumonia and their clinical outcomes. Influenza Other Respir Viruses. 2014;8(1):21-24.
  • DOI: 10.1111/irv.12206
  • Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe. 2013;13(4):379-393.
  • DOI: 10.1016/j.chom.2013.03.010
  • Mori I. Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virol. 2015;59(4):338-349.
  • DOI: 10.4149/av_2015_04_338
  • Lochhead JJ, Kellohen KL, Ronaldson PT, Davis TP. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci Rep. 2019;9(1):2621.
  • DOI: 10.1038/s41598-019-39191-5
  • Bohmwald K, Galvez NM, Rios M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386.
  • DOI: 10.3389/fncel.2018.00386
  • Driessen AK, Farrell MJ, Mazzone SB, McGovern AE. Multiple neural circuits mediating airway sensations: Recent advances in the neurobiology of the urge-to-cough. Respir Physiol Neurobiol. 2016;226:115-120.
  • DOI: 10.1016/j.resp.2015.09.017
  • Audrit KJ, Delventhal L, Aydin O, Nassenstein C. The nervous system of airways and its remodeling ininflammatory lung diseases. Cell Tissue Res. 2017;367(3):571-590.
  • DOI: 10.1007/s00441-016-2559-7
  • Wheeler DL, Sariol A, Meyerholz DK, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128(3):931-943.
  • DOI: 10.1172/JCI97229
  • Atkinson JR, Bergmann CC. Protective humoral immunity in the central nervous system requires peripheral CD19-Dependent germinal center formation following Coronavirus encephalomyelitis. J Virol. 2017;91(23):pii: e01352-17.
  • DOI: 10.1128/JVI.01352-17
  • Mora-Díaz JC, Piñeyro PE, Houston E, et al. Porcine hemagglutinating encephalomyelitis virus: a review. Front Vet Sci. 2019;6:53.
  • DOI: 10.3389/fvets.2019.00053
  • Jaimes JA, Millet JK, Stout AE, et al. A tale of two viruses: the distinct spike glycoproteins of feline Coronaviruses. viruses. 2020;12(1):83.
  • DOI: 10.3390/v12010083
  • Zalinger ZB, Elliott R, Weiss SR. Role of the inflammasome-related cytokines Il-1 and Il-18 during infection with murine coronavirus. J Neurovirol. 2017;23(6):845-854.
  • DOI: 10.1007/s13365-017-0574-4
  • Li K, Wohlford-Lenane C, Perlman S, et al. Middle east respiratory syndrome Coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712-722.
  • DOI: 10.1093/infdis/jiv499
  • McCray PB Jr, Pewe L, Wohlford-Lenane C, Hickey M. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813-821.
  • DOI: 10.1128/JVI.02012-06
  • Dubé M, Le Coupanec A, Wong AH, Rini JM. Axonal transport enables neuron-to-neuron propagation of human Coronavirus OC43. J Virol. 2018;92(17):e00404-18.
  • DOI: 10.1128/JVI.00404-18
  • Li Z, He W, Lan Y, et al. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. Peer J. 2016;4:e2443.
  • DOI: 10.7717/peerj.2443
  • Matsuda K, Park CH, Sunden Y, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet Pathol. 2004;41(2):101-107.
  • DOI: 10.1354/vp.41-2-101
  • Raux H, Flamand A, Blondel D. Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol. 2000;74(21):10212-10216.
  • DOI: 10.1128/jvi.74.21.10212-10216.2000
  • Morfopoulou S, Brown JR, Davies EG, et al. Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med. 2016;375(5):497- 498.
  • DOI: 10.1056/NEJMc1509458
  • Nilsson A, Edner N, Albert J, Ternhag A. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect Dis (Lond). 2020:52(6):419-422.
  • DOI: 10.1080/23744235.2020.1729403
  • Turgay C, Emine T, Ozlem K, et al. A rare cause of acute flaccid paralysis: human coronaviruses. J Pediatr Neurosci. 2015;10(3):280-281.
  • DOI: 10.4103/1817-1745.165716
  • Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74(19):8913-8921.
  • DOI: 10.1128/jvi.74.19.8913-8921.2000
  • Lau SK, Woo PC, Yip CC, et al. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006;44(6):2063-2071.
  • DOI: 10.1128/JCM.02614-05
  • Lau KK, Yu WC, Chu CM, et al. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004;10(2):342-344.
  • DOI: 10.3201/eid1002.030638
  • Lang ZW, Zhang LJ, Zhang SJ, Meng X. A clinicopathological study of three cases of severeacute respiratory syndrome (SARS). Pathology. 2003;35(6):526-531.
  • DOI: 10.1080/00313020310001619118
  • Gu J, Gong EC, Zhang B, Zheng J. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415- 424.
  • DOI: 10.1084/jem.20050828
  • Jiang G, Korteweg С. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-1147.
  • DOI: 10.2353/ajpath.2007.061088
  • Algahtani H, Subahi A, Shirah B. Neurological complications of middle east respiratory Syndrome Coronavirus: a report of two cases and review of the literature. Case Rep Neurol Med. 2016;2016:3502683.
  • DOI: 10.1155/2016/3502683
  • Arabi YM, Harthi A. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015;43(4):495-501.
  • DOI: 10.1007/s15010-015-0720-y
  • Li Y, Li H, Fan R, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016;59(3):163-169.
  • DOI: 10.1159/000453066
  • Savarin C, Dutta R, Bergmann CC. Distinct gene profiles of bone marrow-derived macrophages and microglia during neurotropic Coronavirus-Induced demyelination. Front Immunol. 2018;9:1325.
  • DOI: 10.3389/fimmu.2018.01325
  • Kim JE, Heo JH, Kim HO, Song SH. Neurological complications during treatment of middle east respiratory syndrome. J Clin Neurol. 2017;13(3):227-233.
  • DOI: 10.3988/jcn.2017.13.3.227
  • Никифоров В.В., Суранова Т.Г., Миронов А.Ю., Забозлаев Ф.Г. Новая коронавирусная инфекция (COVID-19): этиология, эпидемиология, клиника, диагностика, лечение и профилактика. Учебно-методическое пособие. - М., 2020. - 48 с.
  • Ekusheva EV, Voitenkov VB. Anosmia and ageusia as the early signs in patients with laboratory confirmed COVID-19 infection. Eur J Neurol. 2020;27 (Suppl. 1):1035.
  • Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological Features of Covid-19. N Engl J Med. 2020:NEJMc2019373.
  • DOI: 10.1056/NEJMc2019373
  • Weyhern C, Kaufmann I, Neff F, Kremer M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet. 2020;395(10241):e109.
  • DOI: 10.1016/S0140-6736(20)31282-4
Еще
Статья научная