Kolmogorov-Arnold neural networks technique for the state of charge estimation for Li-ion batteries

Бесплатный доступ

Kolmogorov-Arnold Network (KAN) is an advanced type of neural network developed based on the Kolmogorov-Arnold representation theorem, offering a new approach in the field of machine learning. Unlike traditional neural networks that use linear weights, KAN applies univariate functions parameterized by splines, allowing it to flexibly capture and learn complex activation patterns more effectively. This flexibility not only enhances the model's predictive capability but also helps it handle complex issues more effectively. In this study, we propose KAN as a potential method to accurately estimate the state of charge (SoC) in energy storage devices. Experimental results show that KAN has a lower maximum error compared to traditional neural networks such as LSTM and FNN, demonstrating that KAN can predict more accurately in complex situations. Maintaining a low maximum error not only reflects KAN's stability but also shows its potential in applying deep learning technology to estimate SoC more accurately, thereby providing a more robust approach for energy management in energy storage systems.

Еще

State of charge (soc), kolmogorov-arnold networks, energy storage, neural network

Короткий адрес: https://sciup.org/147245972

IDR: 147245972   |   DOI: 10.14529/mmp240402

Список литературы Kolmogorov-Arnold neural networks technique for the state of charge estimation for Li-ion batteries

  • Chen Zhilong. State of Charge Estimation Method of Energy Storage Battery Based on Multiple Incremental Features / Chen Zhilong, He Ting, Mao Yingzhe, Zhu Wenlong, Xiong Yifeng et all // Journal of The Electrochemical Society. - 2024. - V. 171, № 7. -Article ID: 070522. - 12 p.
  • Hu Xiaosong. Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling / Hu Xiaosong, Jiang Jiuchun, Cao Dongpu, B. Egardt // IEEE Transactions on Industrial Electronics. - 2016. - V. 63, № 4. - P. 2645-2656.
  • Dreglea, A. Hybrid Renewable Energy Systems, Load and Generation Forecasting, New Grids Structure, and Smart Technologies / A. Dreglea, A. Foley, U. Hager, D. Sidorov, N. Tomin // Solving Urban Infrastructure Problems Using Smart City Technologies. - 2021. -P. 475-484.
  • Bockrath, S. State of Charge Estimation using Recurrent Neural Networks with Long Short-Term Memory for Lithium-Ion Batteries / S. Bockrath, A. Rosskopf, S. Koffel, S. Waldhor, K. Srivastava, V.R.H. Lorentz // IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. - Lisbon, 2019. - P. 2507-2511.
  • Tian Jinpeng. Deep Learning Framework for Lithium-ion Battery State of Charge Estimation: Recent Advances and Future Perspectives / Tian Jinpeng, Chen Cheng, Shen Weixiang, Sun Fengchun, Xiong Rui // Energy Storage Materials. - 2023. - V. 61. -Article ID: 102883.
  • Ziming, Liu. KAN: Kolmogorov-Arnold Networks / Liu Ziming, Wang Yixuan, S. Vaidya, F. Ruehle, J. Halverson, M. Soljacic, T.Y. Hou, M. Tegmark // arXiv: Computer Science. -2024. - 48 p. - URL: https://arxiv.org/abs/2404.19756.
  • Колмогоров, А.Н. О представлении непрерывных функций нескольких переменных в виде суперпозиции непрерывных функций одного переменного и сложения / А.Н. Колмогоров // Доклады академии наук СССР. - 1957. - Т. 114, № 5. - С. 953-956.
  • Арнольд, В.И. О представлении непрерывных функций трех переменных суперпозициями непрерывных функций двух переменных / В.И. Арнольд // Доклады академии наук СССР. - 1957. - Т. 114, № 4. - С. 679-681.
  • Hornik, K. Multilayer Feedforward Networks are Universal Approximators / K. Hornik, M. Stinchcombe, H. White // Neural Networks. - 1989. - V. 2, № 5. - P. 359-366.
  • De Boor, C. A Practical Guide to Splines / C. De Boor // Mathematics of Computation. -1978. - V. 27, № 149.
  • Дао Минь Хиен. Оценка состояния заряда накопителей энергии с помощью сетей Колмогорова - Арнольда / Минь Хиен Дао, Д.Н. Сидоров // Динамические системы и компьютерные науки: теория и приложения (DYSC 2024): материалы 6-й Международной конференции. - 2024. - С. 206-209.
  • Kollmeyer, P. Panasonic 18650PF Li-ion Battery Data / P. Kollmeyer // Mendeley Data. -2018.
  • Kollmeyer, P. Turnigy Graphene 5000mAh 65C Li-ion Battery Data / P. Kollmeyer, M. Skells // Mendeley Data. - 2020.
  • Vidal, C. Panasonic 18650PF Li-ion Battery Data and Example FNN and LSTM Neural Network SOC Estimator Training Script / C. Vidal, P.J. Kollmeyer // Mendeley Data. -2021.
  • GitHub. - URL: https://github.com/KindXiaoming/pykan (дата обращения 20.10.2024).
Еще
Статья научная