Lost in machine translation: contextual linguistic uncertainty
Автор: Sukhoverkhov Anton V., Dewitt Dorothy, Manasidi Ioannis I., Nitta Keiko, Krsti Vladimir
Журнал: Вестник Волгоградского государственного университета. Серия 2: Языкознание @jvolsu-linguistics
Рубрика: Межкультурная коммуникация и сопоставительное изучение языков
Статья в выпуске: 4 т.18, 2019 года.
Бесплатный доступ
The article considers the issues related to the semantic, grammatical, stylistic and technical difficulties currently present in machine translation and compares its four main approaches: Rule-based ( RBMT ), Corpora-based ( CBMT ), Neural ( NMT ), and Hybrid ( HMT ). It also examines some “open systems”, which allow the correction or augmentation of content by the users themselves (“crowdsourced translation”). The authors of the article, native speakers presenting different countries (Russia, Greece, Malaysia, Japan and Serbia), tested the translation quality of the most representative phrases from the English, Russian, Greek, Malay and Japanese languages by using different machine translation systems: PROMT (RBMT), Yandex.Translate (HMT) and Google Translate (NMT). The test results presented by the authors show low “comprehension level” of semantic, linguistic and pragmatic contexts of translated texts, mistranslations of rare and culture-specific words, unnecessary translation of proper names, as well as a low rate of idiomatic phrase and metaphor recognition. It is argued that the development of machine translation requires incorporation of literal, conceptual, and content- and-contextual forms of meaning processing into text translation expansion of metaphor corpora and contextological dictionaries, and implementation of different types and styles of translation, which take into account gender peculiarities, specific dialects and idiolects of users. The problem of untranslatability (‘linguistic relativity') of the concepts, unique to a particular culture, has been reviewed from the perspective of machine translation. It has also been shown, that the translation of booming Internet slang, where national languages merge with English, is almost impossible without human correction.
Machine translation, untranslatability, contextual translation, linguistic relativity, lexical ambiguity, syntactic ambiguity
Короткий адрес: https://sciup.org/149130004
IDR: 149130004 | DOI: 10.15688/jvolsu2.2019.4.10
Список литературы Lost in machine translation: contextual linguistic uncertainty
- Abd Rahman K., Md Norwawi N., 2013. The Challenges of Handling Proverbs in Malay-English Machine Translation. 14th International Conference on Translation 2013. Penang, University Sains Malaysia, pp. 27-29. URL: www.scribd.com/doc/163669571/Khirulnizam-The-Challenges-of-Automated-Detection-and-Translation-of-Malay-Proverb.
- Arestova A.A., 2015. Sravnitelnyy analiz sistem mashinnogo perevoda [Comparative Analysis of Machine Translation Systems]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 9, Issledovaniya molodykh uchenykh [Science Journal of Volgograd State University. Young Scientists' Research], no. 13, pp. 105-109.
- Babhulgaonkar A.R., Bharad S.V., 2017. Statistical Machine Translation. Intelligent Systems and Information Management. 1st International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, pp. 62-67.
- Bartsch R., 1987. Norms of Language: Theoretical and Practical Aspects. London, New York, Longman. 348 p.
- Caruso G., 2012. French Language Legislation in the Digital Age: The Use of Borrowed English Telecommunication Terms and Their Official French Replacements on Twitter and in the American Foreign Language Classroom. Theses, Dissertations, and Other Capstone Projects. URL: https://cornerstone.lib.mnsu.edu/cgi/viewcontent.cgi?article=1119&context=etds.
- Chan S.F., DeWitt D., Chin H.L., 2018. The Analysis of Cultural and Intercultural Elements in Mandarin as a Foreign Language Textbooks from Selected Malaysian Public Higher Education Institutions. MOJES: Malaysian Online Journal of Educational Sciences, vol. 6 (1), pp. 66-90. URL: https://mojes.um.edu.my/article/view/12512.
- Costa-Jussa M.R., Fonollosa J.A., 2015. Latest Trends in Hybrid Machine Translation and Its Applications. Computer Speech & Language, vol. 32 (1), pp. 3-10.
- Crystal D., 2001. Language and the Internet. Cambridge, Cambridge University Press. 272 p.
- Cui J., 2012. Untranslatability and the Method of Compensation. Theory and Practice in Language Studies, vol. 2 (4), pp. 826-830.
- Da Fonseca J., Carolino P., 2002. O novo guia de conversaзгo em portuguez e inglez. Casa da Palavra.
- De Bot K., Lowie, W., Verspoor M., 2007. A Dynamic Systems Theory Approach to Second Language Acquisition. Bilingualism: Language and Cognition, vol. 10 (1), pp. 7-21.
- Deutscher G., 2010. Through the Language Glass: Why the World Looks Different in Other Languages. New York, Metropolitan Books. 306 p.
- Dulov S.Yu., Shmeleva A.G., Boronkinova N.T., 2017. Praktika mashinnogo perevoda i iskusstvennye yazyki v oblasti perevoda [Practice of Machine Translation and Man-Made Languages in Translation]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology], vol. 31, no. 14 (195), pp. 62-64.
- Durdureanu I.I., 2011. Translation of Cultural Terms: Possible or Impossible. The Journal of Linguistic and Intercultural Education, vol. 4, pp. 51-63.
- Fowler C.A., Hodges B.H., 2011. Dynamics and Languaging: Toward an Ecology of Language. Ecological Psychology, vol. 23, pp. 147-156.
- Hermans T., 1996. Norms and the Determination of Translation. Alvarez R., Vidal A., eds. Translation, Power, Subversion. Clevedon, Multilingual Matters, pp. 25-51.
- Hoffman J., 2012. Me Translate Funny One Day. The New York Times.
- Johnson M., Schuster M., Le Q.V., Krikun M., Wu Y., Chen Z., Hughes M., 2017a. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. Transactions of the Association for Computational Linguistics, vol. 5, pp. 339-351.
- Johnson R., Pirinen T.A., Puolakainen T., Tyers F., Trosterud T., Unhammer K., 2017b. North-Sбmi to Finnish Rule-Based Machine Translation System. Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Gothenburg, Sweden Linkцping University Electronic Press, vol. 131, pp. 115-122.
- Koltan O.A., 2017. Osobennosti ispolzovaniya angliyskikh zaimstvovaniy v sovremennom yazyke SMI i povsednevnoy zhizni [Specifics of the Use of English Borrowings in the Modern Language of the Media and Everyday Life]. Mir yazykov: rakurs i perspektivy: sb. materialov VIII Mezhdunar. nauch.-prakt. konferentsii [The World of Languages: Foreshortening and Perspectives. Collection of Materials from the 8th International Scientific and Practical Conferences]. Minsk, Izd-vo BGU, pp. 95-100.
- Kotov R.G., Marchuk Yu.N., Nelyubin L.L., 1983. Mashinnyy perevod v nachale 80-kh godov [Machine Translation in the Early 80s]. Voprosy yazykoznaniya [Topics in the Study of Language], vol. 1, pp. 31-38.
- Kцvecses Z., 2005. Metaphor in Culture: Universality and Variation. Cambridge, Cambridge University Press. 314 p.
- Kwee A.T., Tsai F.S., Tang W., 2009. Sentence-Level Novelty Detection in English and Malay. Theeramunkong T., Kijsirikul B., Cercone N., Ho T.B., eds. Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science. Berlin, Springer, vol. 5476, pp. 40-51.
- Lawrence V., 1995. The Translator's Invisibility. New York, Routledge. 353 p.
- Lim H., 2018. Design for Computer-Mediated Multilingual Communication with AI Support. Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing ACM. New York, pp. 93-96.
- Lim H., Cosley D., Fussell S.R., 2018. Beyond Translation: Design and Evaluation of an Emotional and Contextual Knowledge Interface for Foreign Language Social Media Posts. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems ACM. New York, ACM, vol. 217.
- Lohar P., Afli H., Way A., 2018. Balancing Translation Quality and Sentiment Preservation (Non-Archival Extended Abstract). Proceedings of the 13th Conference of the Association for Machine Translation in the Americas, vol. 1, pp. 81-88.
- Low P.A., 2011. Translating Jokes and Puns. Perspectives: Studies in Translatology, vol. 19 (1), pp. 59-70.
- Marchuk Yu.N., 2016. Kontekstnoe razreshenie leksicheskoy mnogoznachnosti [Resolution of Polysemy in Context]. Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Lingvistika [Bulletin of the Moscow Region State University. Series: Linguistics], no. 1, pp. 26-32.
- Muhammad H.S., 2006. Dalam Daun Ada Bicara: Falsafah Alam Pantun Melayu. Rogayah A.H., Jumaah I., eds. Pandangan Semesta Melayu Pantun. Kuala Lumpur, Dewan Bahasa dan Pustaka, pp. 1-32.
- Na W.E.I., 2016. Gender Differences in the Use of English Vocabulary Learning Strategies in Chinese Senior High Schools. Studies in Literature and Language, vol. 12 (4), pp. 58-62.
- Nguyen T.Q., Chiang D., 2017. Improving Lexical Choice in Neural Machine Translation. Proceedings of NAACL-HLT 2018. New Orleans, Louisiana, Association for Computational Linguistics, pp. 334-343.
- Novozhilova A.A., 2014. Mashinnye sistemy perevoda: kachestvo i vozmozhnosti ispolzovaniya [Machine Translation Systems: Quality and Possible Ways of Use]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 2, Yazykoznanie [Science Journal of Volgograd State University. Linguistics], no. 3 (22), pp. 67-73.
- DOI: 10.15688/jvolsu2.2019.3.13
- O'Curran E., 2014. Machine Translation and Post-Editing for User Generated Content: An LSP Perspective. Proceedings of the 11th Conference of the Association for Machine Translation in the Americas. Vol. 2. Vancouver, BC, pp. 50-54.
- Okamoto S., 2013. Variability in Societal Norms for Japanese Women's Speech: Implications for Linguistic Politeness. Multilingua, vol. 32, iss. 2, pp. 203-223.
- Oladosu J., Esan A., Adeyanju I., Adegoke B., Olaniyan O., Omodunbi B., 2016. Approaches to Machine Translation: A Review. FUOYE Journal of Engineering and Technology, vol. 1 (1), pp. 120-126.
- Pasfield-Neofitou S., 2012. ‘Digital Natives' and ‘Native Speakers': Competence in Computer Mediated Communication. Sharifian F., Jamarani M., eds. Language and Intercultural Communication in the New Era. New York, London, Routledge, pp. 138-159.
- Razlogova E.E., 2017. Standartnye i nestandartnye varianty perevoda [Standard and Non-Standard Versions of Translation]. Voprosy yazykoznaniya [Topics in the Study of Language], no. 4, pp. 52-73.
- Riahovskaya A.Yu., 2017. Sravnitelnyy analiz sistem mashinnogo perevoda [Comparative Analysis of Machine Translation Systems]. Vestnik obrazovatelnogo konsortsiuma Srednerusskiy universitet. Seriya: Informatsionnye tekhnologii, no. 1 (9), pp. 25-28.
- Sanders E.F., 2014. Lost in Translation: An Illustrated Compendium of Untranslatable Words from Around the World. Berkeley, California, Ten Speed Press. 112 p.
- Sharifian F., 2017. Cultural Linguistics: Cultural Conceptualisations and Language. Amsterdam, Philadelphia, John Benjamins, XVII. 171 p.
- Steffensen S.V., Fill A., 2014. Ecolinguistics: The State of the Art and Future Horizons. Language Sciences, vol. 41, pp. 6-25.
- Styblo Jr., M., 2007. English Loanwords in Modern Russian Language. Master's Dissertation. Chapel Hill. 72 p.
- Sukhoverhov A.V., 2014. Sovremennye tendentsii v razvitii ekolingvistiki [Current Trends and Developments in Ecolinguistics]. Yazyk i kultura [Language and Culture], no. 3 (27), pp. 166-175.
- Sukhoverkhov A.V., 2015. Lingvisticheskiy determinizm, kumulyativnaya evolyutsiya i rost nauchnogo znaniya [Linguistic Determenism, Cumulative Evolution and Development of Scientific Knowledge]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Polythematic Online Scientific Journal of Kuban State Agrarian University], no. 105, pp. 1-22.
- Sukhoverkhov A.V., Fowler C.A., 2015. Why Language Evolution Needs Memory: Systems and Ecological Approaches. Biosemiotics, vol. 8 (1), pp. 47-65.
- Toury G., 1995. Descriptive Translation Studies and Beyond. Amsterdam, Philadelphia, John Benjamins. 311 p.
- Verspoor M., De Bot K., Lowie W., eds., 2011. A Dynamic Systems Approach to Second Language Development: Methods and Techniques. Amsterdam, Philadelphia, John Benjamins. 211 p.
- Wang X., Lu Z., Tu Z., Li H., Xiong D., Zhang M., 2017. Neural Machine Translation Advised by Statistical Machine Translation. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, California, AAAI, pp. 3330-3336.
- Whorf B., 1956. Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf. Cambridge, MIT Press. 290 p.
- Wiechetek L., 2008. Rule-Based MT Approaches Such as Apertium and GramTrans. URL: https://uit.no/Content/84555/cache=20171811052806/mt.pdf.
- Wierzbicka, A., 1992. Semantics, Culture and Cognition: Universal Human Concepts in Culture-Specific Configurations. New York, Oxford University Press. 487 p.
- Wu Y. et. al., 2016. Google's Neural Machine Translation System: Bridging the Gap Between Human and Machine Translation. 23 p. arXiv:1609.08144
- Yusoff N., Jamaludin Z., Yusoff M.H., 2016. Semantic-Based Malay-English Translation Using N-Gram Model. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 8 (10), pp. 117-123.
- Zaremba W., Sutskever I., Vinyals O., 2014. Recurrent Neural Network Regularization. 8 p. arXiv:1409.2329