Magnetic properties and electronic structure of half-Heusler alloys FeRhSb1-xZx (Z = P, As, Sn, Si, Ge, Ga, In, Al)
Автор: Pavlukhina O.O., Buchelnikov V.D., Sokolovskiy V.V., Zagrebin M.A., Zotov I.S.
Рубрика: Математическое моделирование
Статья в выпуске: 4 т.17, 2024 года.
Бесплатный доступ
The electronic structure and magnetic properties of FeRhSbZ ( = 0, 0,25, 0,5, 0,75, 1) alloys with = P, As, Sn, Si, Ge, Ga, In, Al are studied by first-principles methods. For all compounds, three cubic phases with different atomic arrangement (, , and ) are considered. It is shown that the -phase is energetically favorable for FeRhSbP( = 0,75, 1), FeRhAs and FeRhSi alloys. For the remaining 29 alloys, the phase is more energetically stable. The values of equilibrium lattice parameters and magnetic moments of stoichiometric ternary alloys are in good agreement with the literature values collected from other theoretical studies. The half-metallic ferromagnetic behavior is predicted for FeRhSbSn, FeRhGe, FeRhSn, and FeRhSbAl. It has been found that the replacement of the element with another element allows for the creation of new four-component alloys that exhibit 100 % spin polarization.
Heusler alloys, density of electronic states, half-metallic ferromagnets, density functional theory
Короткий адрес: https://sciup.org/147245974
IDR: 147245974 | DOI: 10.14529/mmp240404
Список литературы Magnetic properties and electronic structure of half-Heusler alloys FeRhSb1-xZx (Z = P, As, Sn, Si, Ge, Ga, In, Al)
- Sootsman J.R., Duck Young Chung, Kanatzidis M.G. New and Old Concepts in Thermoelectric Materials. Angewandte Chemie International Edition, 2009, vol. 48, no. 46, pp. 8616-8639. DOI: 10.1002/anie.200900598
- Sakurada S., Shutoh N. Effect of Ti Substitution on the Thermoelectric Properties of (Zr,Hf) NiSn Half-Heusler Compounds. Applied Physics Letters, 2005, vol. 86, no. 6, article ID: 082105, 3 p. DOI: 10.1063/1.1868063
- Kimura Y., Tamura Y., Kita T. Thermoelectric Properties of Directionally Solidified Half-Heusler Compound NbCoSn Alloys. Applied Physics Letters, 2008, vol. 92, no. 1, article ID: 012105, 3 p. DOI: 10.1063/1.2828713
- Kuble J. Curie Temperatures of Zinc-Blende Half-Metallic Ferromagnets. Physical Review B, 2003, vol. 67, no. 22, article ID: 220403, 4 p. DOI: 10.1103/PhysRevB.67.220403
- Ma Jianhua, Hegde V.I., Munira K., Xie Yunkun, Keshavarz S., Mildebrath D.T., Wolverton C., Ghosh A.W., Butler W.H. Computational Investigation of Half-Heusler Compounds for Spintronics Applications. Physical Review B, 2017, vol. 95, article ID: 024411, 25 p. DOI: 10.1103/PhysRevB.95.024411
- De Groot R. A., MuellerF. M., van Engen P.G., Buschow K.H.J. New Class of Materials: Half-Metallic Ferromagnets. Physics Review Letters, 1983, vol. 50, no. 25, pp. 2024-2027. DOI: 10.1103/PhysRevLett.50.2024
- Bennani M.A., Aziz Z., Terkhi S., Elandaloussi E.H., Bouadjemi B., Chenine D., Benidris M., Youb O., Bentata S. Structural, Electronic, Magnetic, Elastic, Thermodynamic and Thermoelectric Properties of the Half-Heusler RhFeX (with X = Ge, Sn) Compounds. Journal of Superconductivity and Novel Magnetism, 2021, vol. 34, no. 1, pp. 211-225. DOI: 10.1007/ s10948-020-05677-x
- Meenakshi R., Srinivasan R.A.S., Amudhavalli A., Rajeswarapalanichamy R., Iyakutti K. Electronic Structure, Magnetic, Optical and Transport Properties of Half-Heusler Alloys RhFeZ(Z=P, As, Sb, Sn, Si, Ge, Ga, In, Al) - a DFT Study. Phase Transitions, 2021, vol. 94, no. 6-8, pp. 415-435. DOI: 10.1080/01411594.2021.1944626
- Yun Zhang, Xiaojie Xu. Machine Learning Modeling of Lattice Constants for Half-Heusler Alloys. AIP Advances, 2020, vol. 10, no. 4, article ID: 045121, 10 p. DOI: 10.1063/5.0002448
- Muhammad I., Jian-Min Zhang, Alia A., Rehman M.U., Muhammad S. Structural, Mechanical, Thermal, Magnetic, and Electronic Properties of the RhMnSb Half-Heusler Alloy Under Pressure. Materials Chemistry and Physics, 2020, vol. 251, article ID: 123110, 9 p. DOI: 10.1016/j.matchemphys.2020.123110
- Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D. Segregation Tendency and Properties of FeRhi —xPtx Alloys. Journal of Magnetism and Magnetic Materials, 2022, vol. 556, no. 6, article ID: 169403, 9 p. DOI: 10.1016/j.jmmm.2022.169403
- Pavlukhina O.O., Sokolovskiy V.V., Zagrebin M.A., Buchelnikov V.D. Modeling of the Structural and Magnetic Properties of Fe-Rh-(Z) Z=(Mn, Pt) Alloys by First Principles Methods. Journal of Magnetism and Magnetic Materials, 2019, vol. 470, pp. 69-72. DOI: 10.1016/j.jmmm.2017.11.052
- Kresse G., Furthmuller J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations using a Plane-Wave Basis Set. Physical Review B, 1996, vol. 54, no. 16, pp. 11169-11186. DOI: 10.1103/PhysRevB.54.11169
- Kresse G., Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 1999, vol. 59, no. 3, pp. 1758-1775. DOI: 10.1103/PhysRevB.59.1758
- Perdew J., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physics Review Letters, 1996, vol. 77, no. 18, pp. 3865-3868. DOI: 10.1103/PhysRevLett.77.3865
- Ahmad R., Gul A., Mehmood N. Artificial Neural Networks and Vector Regression Models for Prediction of Lattice Constants of Half-Heusler Compounds. Materials Research Express, 2019, vol. 6, no. 4, article ID: 046517, 14 p. DOI: 10.1088/2053-1591/aafa9f