Математические методы оценки финансовых транзакций на предмет мошенничества

Бесплатный доступ

В настоящее время увеличивается количество финансовых транзакций, что приводит к росту финансового мошенничества и, как следствие, возникновению потерь в мировой экономике от кибератак. Выявление девиантных транзакций является актуальной темой современных исследований, поскольку для всех участников банковской системы важно минимизировать риски, которые могут возникать из-за наличия уязвимостей при совершении онлайн-операций. Рост финансовых потерь из-за увеличения финансового мошенничества актуализирует значимость применения математических методов для анализа реальных данных. Целью настоящего исследования является разработка и определение наилучшей математической модели для предсказания мошеннических операций. Новизна исследования состоит в построении различных моделей бинарного выбора на основе панельных данных для прогнозирования девиантных транзакций, а также сравнении эконометрических моделей с моделями, построенными на основе нейросетей и ансамблей деревьев, и обосновании выбора наилучшей модели. Методическую основу исследования составили методы корреляционного анализа, эконометрические и нейросетевые методы, ансамбль решающих деревьев. К наиболее существенным результатам, характеризующим научную новизну исследования, можно отнести следующие: 1) проведен эконометрический анализа финансовых транзакций на панельных данных с использованием пробит- (probit-) и логит-модели (logit-model) с фиксированными эффектами (fixed effect) или со случайными эффектами (random effect); 2) для прогнозирования мошеннической транзакции применены нейросетевые методы и метод, основанный на ансамбле деревьев; 3) проведен сравнительный анализ построенных математических моделей, определена модель, наилучшим образом указывающая мошенническую транзакцию. Перспективы исследований связаны с более глубоким изучением влияния различных факторов для проверки финансовых транзакций на предмет мошенничества.

Еще

Финансовые транзакции, эконометрическое моделирование, панельные данные, интеллектуальный анализ данных, логит-модель, пробит-модель, классификация финансовых транзакций, нейросетевое моделирование, случайный лес, прогнозирование

Короткий адрес: https://sciup.org/147246831

IDR: 147246831   |   DOI: 10.17072/1994-9960-2021-1-54-66

Список литературы Математические методы оценки финансовых транзакций на предмет мошенничества

  • Lavion D. et al. PwC's global economic crime and fraud survey. 2018. PwC.com.
  • Франгуриди Г. Динамика условных моментов высоких порядков и прогнозирование стоимостной меры риска // Квантиль. 2014. № 12. С. 69-82.
  • Palshikar G. The hidden truth - Frauds and their control: A critical application for business intelligence, intelligent enterprise // Intelligent Enterprise. 2002. Vol. 5, № 9. P. 46-51.
  • Amemiya T. The estimation of the variances in a variance-components model // International Economic Review. 1971. Vol. 12, Iss. 1. P. 1-13.
  • Lenz H.-J. Data fraud detection: A first general perspective. In: Enterprise Information Systems. 16th International Conference, ICEIS 2014. Lisbon, Portugal, April 27-30, 2014. P. 14-35.
Статья научная