Mathematical model of heating of plane porous heat exchanger of heat surface cooling system in the starting mode
Автор: Ryazhskikh V.I., Konovalov D.A., Dakhin S.V., Bulygin Yu.A., Shatskiy V.P.
Рубрика: Программирование
Статья в выпуске: 4 т.11, 2018 года.
Бесплатный доступ
Based on the conjugate Darcy-Brinkman-Forchheymer hydrodynamic model and Schumann thermal model with boundary conditions of the second kind, a model with lumped parameters was proposed by means of geometric 2D averaging to identify the integral kinetics of the temperature fields of a porous matrix and a Newtonian coolant without phase transitions. The model was adapted for a heat-stressed surface by means of a porous compact heat exchanger with uniform porosity and permeability, obeying the modified Kozeny-Carman relation, in the form of a Cauchy problem, the solution of which was obtained in the final analytical representation for the average volume temperatures of the coolant and the porous matrix. The possibility of harmonic damped oscillations of the temperature fields and the absence of coolant overheating in the starting condition of the cooling system were shown. For the dimensionless time of establishing the stationary functioning of the porous heat exchanger, an approximate estimate was obtained correlating with the known data of computational and full-scale experiments.
Flat porous heat exchanger, heat-stressed surface, boundary conditions of the second kind, time to settle a stationary warm regime
Короткий адрес: https://sciup.org/147232905
IDR: 147232905 | DOI: 10.14529/mmp180410
Список литературы Mathematical model of heating of plane porous heat exchanger of heat surface cooling system in the starting mode
- Kandlikar, S.G. Heat Transfer and Fluid Flow in Minichannels and Microchannels / S.G. Kandlikar, S. Garimella, D. Li, M.R. King. - Oxford: Elsevier, 2014.
- Hutter, G.W. The Status of World Geothermal Power Generation // Procceding World Geothermal Congress. - 2000. - P. 23-37.
- Advani, S.G. Process Modeling in Composite Manufacturing / S.G. Advani, M. Sczer. - New York: Marcel Dekker, 2002.
- Howell, J.R. Combustion of Hydrocarbon Fuels within Porous Inert Media / J.R. Howell, M.J. Hall, J.L. Ellzey // Progress in Energy and Combustion Science. - 1996. - V. 22. - P. 121-145.
- Bees, M.A. Wavelengths of Bioconvection Patterns / M.A. Bees, N.A. Hill // The Journal of Experimental Biology. - 1997. - V. 200. - P. 1515-1526.
- Nield, D.A. Convection in Porous Media / A. Bejan. - New York: Springer, 1999.
- Alazmi, B. Analysis of Variants within the Porous Media Transport Models / B. Alazmi, K. Vafai // Journal of Heat Transfer. - 2000. - V. 122. - P. 303-326.
- Hsu, C.T. Thermal Dispersion in Porous Medium / C.T. Hsu, P. Cheng // Journal of Heat and Mass Transfer. - 1990. - V. 33, № 8. - P. 1587-1597.
- Guo, Z. Pulsating Flow and Heat Transfer in a Pipe Partially Filled with a Porous Medium / Z. Guo, S.Y. Kim, H.J. Sung // Journal of Heat and Mass Transfer. - 1997. - V. 40, № 17. - P. 4209-4218.
- Vafai, K. An Experimental Investigation of Heat Transfer in Variable Porosity Media / K. Vafai, R.I. Alkire, C.L. Tien // Journal of Heat Transfer. - 1985. - V. 107. - P. 642-647.
- Renken, K.J. Experiment and Analysis of Forced Convection Heat Transfer in a Packed Led of Spheres / K.J. Renken, D. Poulikakos // Journal of Heat and Mass Transfer. - 1988. - V. 31. - P. 1399-1408.
- Teruel, F.E. Validity of the Macroscopic Energy Equation Model for Laminar Flows Through Porous Media: Developing and Fully Developed Regions // Journal of Thermal Sciences. - 2017. - V. 112. - P. 439-449.
- Ряжских, В.И. Анализ матемаической модели теплосъема с плоской поврехности ламинарно движущимся хладоагентом через сопряженную пористую среду / В.И. Ряжских, Д.А. Коновалов, М.И. Слюсарев, И.Г. Дроздов // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2016. - Т. 9, № 3. - С. 68-81.
- Ingham, D.B. Governing Equations for Laminar Flows Through Porous Media / D.B. Ingham // Emerging Technologies and Techniques in Porous Media. - Dordrecht: Springer Science Business Media, 2004. - V. 134. - P. 1-11.
- Попов, И.А. Гидродинамика и теплообмен в пористых теплообменных элементах и аппаратах / И.А. Попов. - Казань: Центр инновационных технологий, 2007.
- Bear, J. Introduction to Modeling of Transport Phenomena in Porous Media / J. Bear, Y. Bachmat. - Dordrecht: Kluwer Academic Publishers, 1991.
- Amiri, A. Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darsian Variable Porosity Incompressible Flow Through Porous Media / A. Amiri, K. Vafai // Journal of Heat and Mass Transfer. - 1994. - V. 37, № 6. - P. 939-954.
- Дач, Г. Руководство к практическому применению преобразования Лапласа и z-преобразования / Г. Дач. - М.: Наука, 1971.
- Dehghan, M. Investigation of Forced Convection Through Entrance Region of a Porous-Filled Microchannel: An Analytical Study Based on the Scale Analysis / M. Dehghan, M.S. Valipour, S. Saedodin, Y. Mahmoudi // Applied Thermal Engineering. - 2016. - V. 99. - P. 446-454.