Mathematical modelling of vortex generation process in the flowing part of the vortex flowmeter and selection of an optimal turbulence model

Бесплатный доступ

The article is devoted to mathematical modelling of processes, occurring in the flowing part of the vortex flowmeter, by the finite element method. The urgency of the current study is due to the lack of research in this area. The analysis of research literature devoted to the study of non-stationary vortex shedding processes and other hydrogasdynamics effects occurring in the flowing part of the vortex flowmeter and similar devices has been performed. A brief description of the vortex generation process behind the bluff body placed in a circular cross-section pipe as well as the basic criteria for functional products are presented. Various mathematical models for describing turbulent flows in pipes with an object or obstruction were investigated. The available software packages suitable for modelling unsteady turbulent flows were analyzed. The ANSYS software package, in particular CFX module for fluid and gas, as well as various approaches to mathematical modelling were used to simulate the flowing part of the vortex flowmeter. The article provides a brief description of the basic computational domain settings, mesh formation and initial and boundary conditions setting. To verify the numerical calculations, physical experiments on fluid and gas test benches were performed. For this purpose the samples corresponding to the numerical model have been manufactured and tested. The research findings led us to conclude that in terms of accuracy and calculation time the optimal approach to numerical simulation of vortex generation processes (Karman vortex street) in the vortex flowmeter is the use of the Reynolds-averaged Navier - Stokes equations (or RANS equations) closed by means of a two-equation model of turbulence, known as the k-e model, which is confirmed by comparison with the experimental data.

Еще

Mathematical modelling, turbulence model, flowing part, vortex flowmeter, bluff body

Короткий адрес: https://sciup.org/147159389

IDR: 147159389   |   DOI: 10.14529/mmp160410

Список литературы Mathematical modelling of vortex generation process in the flowing part of the vortex flowmeter and selection of an optimal turbulence model

  • Кремлевский, П.П. Расходомеры и счетчики количества/П.П. Кремлевский. -Л.: Машиностроение, 1989. -701 с.
  • Baker, R.C. Flow Measurement Handbook/R.C. Baker. -N.-Y.: Cambridge University Press, 2000. -524 p.
  • Кремлевский, П.П. Расходомеры и счетчики количества веществ. Кн. 1/П.П. Кремлевский -СПб.: Политехника, 2002. -409 с.
  • Карташев, А.Л. Исследование пространственных гидрогазодинамических эффектов в проточной части вихревого расходомера/А.Л. Карташев, А.А. Кривоногов//Вестник ЮУрГУ. Серия: Машиностроение. -2015.-Т. 15, № 4. -С. 5-13 DOI: 10.14529/engin150401
  • Фабер, Т.Е. Гидроаэродинамика/Т.Е. Фабер. -М: Постмаркет, 2001. -560 с.
  • Карташев, А.Л. Исследование пространственных гидродинамических эффектов в проточной части вихревого расходомера и оценка возможности их численного моделирования /А.Л. Карташев, А.А. Кривоногов//Наука ЮУрГУ. Секция технических наук. Материалы 66-й научной конференции, 2014. -С. 33-40. -URL: http://dspace.susu.ru/xmlui/bitstream/handle/0001.74/4287/3.pdf (дата обращения: 8.05.2016)
  • Использование численных методов моделирования при разработке вихревых расходомеров/В.Д. Богданов, А.В. Конюхов, А.А. Кривоногов, Е.В. Сафонов, В.А. Дорохов//Датчики и системы. -2012. -№ 8 (159). -С. 40-43.
  • Снегирев, А.Ю. Высокопроизводительные вычисления в технической физике. Численное моделирование турбулентных течений/А.Ю. Снегирев. -СПб.: Изд-во Политехн. ун-та, 2009. -143 с.
  • Bailly, C. Turbulence/C.Bally, G. Comete-Bellot. -Springer International Publishing, 2015. -360 p.
  • Spalart, P.R. Strategies for Turbulence Modelling and Simulations/P.R. Spalart//International Journal of Heat and Fluid Flow. -2000. -V. 21. -P. 252-263.
  • Wilcox, D.C. Turbulence Modelling for CFD/D.C. Wilcox. -La Canada, California: DCW Industries Inc., 1998. -477 p.
  • Spalart, P.R. A One-Equation Turbulence Model for Aerodynamic Flows/P.R. Spalart, S.R. Allmaras//Technical Report AIAA-92-0439. 30th Aerospace Scinces Meeting and Exibit, 1992. -22 p.
  • Launder, B.E. Lectures in Mathematical Models of Turbulence/B.E. Launder, D.B. Spalding. -London: Academic Press, 1972. -169 p.
  • Лапин, Ю.В. Внутренние течения газовых смесей/Ю.В. Лапин, М.Х. Стрелец. -М.: Наука, 1989. -368 c.
  • Pope, S.B. Turbulent Flows/S.B. Pope. -Cambridge: Cambridge Univ. Press, 2000. -771 p.
  • Renormalization Group Modelling and Turbulence Simulations/S.A. Orszag, V. Yakhot, W.S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, B. Patel//International Conference on Near-Wall Turbulent Flows. -Tempe, Arizona, 1993. -P. 1031-1046.
  • Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications/F.R. Menter//AIAA Journal. -1994.-V. 32, № 8. -P. 1598-1605.
  • Menter, F.R. Eddy Viscosity Transport Equations and their Relation to the Model/F.R. Menter//ASME Journal of Fluids Engineering. -1997. -V. 119, № 4. -P. 876-884.
  • Menter, F.R. Ten Years of Experience with the SST Turbulence Model/F.R. Menter, M. Kuntz, R. Langtry//Turbulence, Heat and Mass Transfer 4. -Begell House Inc. -2003. -P. 625-632.
  • Menter, F.R. Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective/F.R. Menter//International Journal of Computational Fluid Dynamics. -2009. -V. 23, № 4. -P. 305-316.
  • A New k-e Eddy-Viscosity Model for High Reynolds Number Turbulent Flows -Model Development and Validation/T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu//Computers and Fluids. -1995. -V. 24, № 3. -P. 227-238.
  • Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets/M. Behnia, S. Parneix, Y. Shabany, P.A. Durbin//International Jounal of Heat and Fluid Flow. -1999. -V. 20, № 1. -P. 1-9.
Еще
Статья научная