Метод распознавания сентимента и эмоций в транскрипциях русскоязычной речи с использованием машинного перевода

Автор: Анастасия Александровна Двойникова, Ильдар Амирович Кагиров, Алексей Анатольевич Карпов

Журнал: Информатика и автоматизация (Труды СПИИРАН).

Рубрика: Искусственный интеллект, инженерия данных и знаний

Статья в выпуске: Том 23 № 4, 2024 года.

Бесплатный доступ

В статье рассматривается проблема распознавания сентимента и эмоций пользователей в русскоязычных текстовых транскрипциях речи с использованием словарных методов и машинного перевода. Количество имеющихся информационных ресурсов для анализа сентимента текстовых сообщений на русском языке очень ограничено, что существенно затрудняет применение базовых методов анализа сентимента, а именно, предобработки текстов, векторизации с помощью тональных словарей, традиционных классификаторов. Для решения этой проблемы в статье вводится новый метод на основе автоматического машинного перевода русскоязычных текстов на английский язык. Частичный перевод предполагает перевод отдельных лексем, не включенных в русскоязычные тональные словари, тогда как полный перевод подразумевает перевод всего текста целиком. Переведенный текст анализируется с использованием различных англоязычных тональных словарей. Экспериментальные исследования для решения задачи распознавания сентимента и эмоций были проведены на текстовых транскрипциях многомодального русскоязычного корпуса RAMAS, извлеченных из аудиоданных экспертным путем и автоматически с использованием системы распознавания речи. В результате применения методов машинного перевода достигается значение взвешенной F-меры распознавания семи классов эмоций 31,12 % и 23,74 %, и трех классов сентимента 75,37 % и 71,60 % для экспертных и автоматических транскрипций русскоязычной речи корпуса RAMAS, соответственно. Также в ходе экспериментов было выявлено, что использование статистических векторов в качестве метода преобразования текстовых данных позволяет достичь значение показателя взвешенной F-меры на 1-5 % выше по сравнению с использованием конкатенированного (статистического и тонального) вектора. Таким образом, эксперименты показывают, что объединение всех англоязычных тональных словарей позволяет повысить точность распознавания сентимента и эмоций в текстовых данных. В статье также исследуется корреляция между длиной вектора текстовых данных и его репрезентативностью. По результатам экспериментов можно сделать вывод, что использование лемматизации для нормализации слов текстовых транскрипций речи позволяет достичь большей точности распознавания сентимента по сравнению со стеммингом. Использование предложенных методов с полным и частичным машинным переводом позволяет повысить точность распознавания сентимента и эмоций на 0,65–9,76 % по показателю взвешенной F-меры по сравнению с базовым методом распознавания сентимента и эмоций.

Еще

Машинный перевод, тональные словари, распознавание эмоций, сентимент-анализ, тональные вектора

Короткий адрес: https://sciup.org/14130020

IDR: 14130020   |   DOI: 10.15622/ia.23.4.9

Статья