Методологические знания в содержании математического образования в контексте компетентностного подхода

Бесплатный доступ

Анализируются две модели обучения - предметно- знаниевая и личностно ориентированная, и показывается, что компетентностный подход призван их интегрировать. Рассматриваются действующие стандарты по математике и проект новых в контексте компетентностной парадигмы, и обосновывается, что их освоение возможно при условии включения методологических знаний в состав содержания математического образования.

Компетентностный подход, цели математического образования, методологические знания

Короткий адрес: https://sciup.org/148164652

IDR: 148164652

Текст научной статьи Методологические знания в содержании математического образования в контексте компетентностного подхода

Начавшееся в конце прошлого века реформирование образования в целом (в том числе математического), превратившееся в дальнейшем в модернизацию, пока еще далеко от завершения.

Главными целями школьного образования до конца ХХ в. было овладение основами наук, формирование знаний, умений и навыков. Мировоззренческая и развивающая функции образования лишь декларировались. Личность ученика понималась как некое типовое явление, «усредненный» вариант, сам он – как носитель и выразитель массовой культуры. Технология образовательного процесса основывалась на идее педагогического управления личностью, идее ее формирования извне, без достаточного учета и использования субъектного опыта ученика как активного творца собственного развития (самообразования, самовоспитания). В основу технологии обучения были положены авторитарность, единообразие программ, методов и форм обучения. Сложилась предметно-знаниевая система обучения.

Разработанная в конце ХХ в. концепция реформирования образования базировалась на следующих принципах: культуросозидающая роль образования; национальное самоопределение школы; демократизация школы; гуманизация и гуманитаризация; дифференциация образовательного процесса. Все они были призваны обеспечить достижение основной цели образования – создания условий для всестороннего, целостного развития и саморазвития личности. В новой концепции, в отличие от традиционной, цели образования отражают не только социальный аспект, но и личностный. По нашему мнению, на сегодняшний день основная проблема образования состоит в реализации последнего.

В 1990-е гг. в практику обучения (в основном в начальной школе) внедрялись идеи развивающего обучения Л.В. Занкова, Д.Б. Эль-конина, В.В. Давыдова. Дальнейшее теоретическое исследование развивающих моделей и концепций обучения в контексте личностного аспекта привело к разработке идей личностно ориентированного подхода к обучению. Основная функция личностно ориентированного образования – обеспечивать и отражать становление системы личностных образовательных смыслов ученика. Можно выделить следующие ключевые положения личностно ориентированного обучения:

Анализ двух моделей приводит к выводу, что предметно-знаниевая и личностно ориентированная системы обучения не должны противопоставляться (как это часто наблюдается), а должны органично дополнять друг друга. Математические знания не утратили своей ценности и в настоящее время.

Механизмом (инструментом) внедрения идей личностно ориентированного обучения в практику работы школы, по мнению А.В. Хуторского, должен стать компе-тентностный подход [5], который предполагает интеграцию личностно ориентированной и предметно-знаниевой моделей обучения. Он не противоречит знанию, а опровергает распространенную иллюзию о том, что выученное и есть знание. Во-первых, существуют различные виды знаний: информационное, знание способов деятельности, методологическое, «живое» знание, личностное, «знание о знании» и «знание о незнании» и т.д. Во-вторых, разработка и внедрение ком-петентностного подхода состоит в преодолении замкнутости образования на себе. Результаты обучения должны быть значимыми и за пределами школы, проявляясь в способности человека действовать в различных проблемных ситуациях. Таким образом, ком-петентностный подход интегрирует две модели обучения, нацелен на создание условий для развития и саморазвития личности ученика. При этом результаты обучения должны носить деятельностный характер как внутри определенной предметной области, так и за ее пределами, а объектом усвоения должна служить учебно-исследовательская, преобразующая деятельность.

Сегодня ведутся дискуссии о необходимости компетентностного подхода в образовании. Его пытаются реализовать в новых государственных стандартах и их проектах.

Напомним, что идеологи компетентност-ного подхода выделяют три уровня компетенций:

  • –    ключевые (определяют общее содержание образования);

  • –    общепредметные (относятся к определенному кругу учебных предметов и образовательных областей);

  • –    предметные (формируются в рамках учебного предмета).

Разработчики нового проекта государственного стандарта заменяют термин «компетенции» на термин «результаты достижений ученика». В ряду последних выделяют:

  •    личностные (готовность и способность к саморазвитию, сформированность мотивации и т.д.);

  •    метапредметные (освоение универсальных учебных действий – познавательных, регулятивных и коммуникативных);

    предметные (освоение опыта специфической для данной предметной области деятельности по получению нового знания, его преобразованию и применению, а также систему основополагающих элементов научного знания, лежащую в основе современной научной картины мира) [3, с. 28–29].

В действующем стандарте цели и задачи современного математического образования представлены следующим образом:

  •    формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  •    развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

  •    овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, получения образования в областях, не требующих углубленной математической подготовки;

  •    воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей [4, с. 27].

Анализ содержания представленных целей показывает, что они отражают образовательную, мировоззренческую, развивающую и воспитательные функции обучения математике. Можно сказать, что цели сформированы в виде основных математических компетенций, которыми должны владеть выпускники средней школы.

Однако в данных целях явно не отражено усвоение учеником опыта математической деятельности, ее сущности, методов и способов, как это предусмотрено в проекте.

В свою очередь специфика математической деятельности не сводится лишь к усвоению готовой информации. Математическая деятельность включает поиск и открытие но-

ИЗВЕСТИЯ ВГПУ

1.Накопление фактов

2. Выдвижение гипотез

3. Проверка истинности доказательством

4. Построение теории

5. Выход в практику

вых знаний. Следовательно, для того чтобы ученик усваивал специфику математической деятельности, он должен быть субъектом поиска и открытия субъективно новых для него математических знаний. В процессе такой деятельности школьник усваивает методы и способы математической деятельности, значительная часть из которых носит универсальный характер. Обучать этому следует не стихийно, а целенаправленно, включая в содержание образования методологические знания. Этой проблемой занимались психологи (В.В. Давыдов, И.С. Якиманская), педагоги (И.Я. Лернер, В.В. Краевский, Л.Я. Зорина и др.), философы (А.А. Касьян), в области философии математики – Г.И. Рузавин, К.А. Рыбников, В.В. Мадер. Их взгляды проанализированы Т.А. Ивановой в работе «Гуманитаризация общего математического образования» [1]. С точки зрения современной философии в содержание методологии научного поиска входят:

  • –    история науки;

  • –    процесс познания;

  • –    общенаучные методы познания, характерные для всех наук, состоящие из методов эмпирического исследования (наблюдение, измерение, эксперимент), методов теоретического исследования (абстрагирование, идеализация, формализация, гипотеза, аксиоматический метод), межуровневых методов (анализ и синтез, индукция и дедукция, классификация, сравнение, аналогия и др.);

  •    основные логические формы и законы мышления;

  •    общенаучные подходы к изучению явлений;

  •    мировоззренческое знание (научная картина мира, стиль научного мышления и т.д.);

  •    частные методы, характерные для той или иной науки.

Сопоставляя состав методологических знаний с целями современного математического образования, сформулированными в русле компетентностного подхода, можно заключить, что методологические знания играют важную роль в становлении личностных, метапредметных и предметных компетенций при обучении математике. В самом деле, освоение школьни- ком опыта математической деятельности, в которой логика и интуиция, анализ и синтез выступают в органичном единстве, возможно только в том случае, когда он является соучастником, субъектом этой деятельности. Одна из ее моделей, которая преобразуется в модель математической учебной деятельности, представлена выше [1, с. 90]:

Освоение опыта этой деятельности во всей ее структурной полноте на доступном уровне позволяет школьникам:

  • 1)    осознать специфику математической деятельности по получению математического знания, его преобразованию и применению ( предметные, математические результаты обучения);

  • 2)    овладеть методами поиска новых знаний – эвристическими; доказательств – логическими, дедуктивными. Поскольку они являются универсальными, их освоение отражает как предметные , так и метапредметные результаты ;

  • 3)    осознать ценность новых знаний, превратить предметные знания в личностные, достичь личностных результатов обучения.

Мы выделяем следующие группы результатов обучения математике, освоение которых в органичном единстве вносит свой вклад в становление всех образовательных компетентностей школьника:

  • 1)    фактологические знания (основные изучаемые в школьном курсе математики понятия, теоремы, алгоритмы, задачи и методы их решения);

  • 2)    операционно-логические знания и умения , которые обеспечивают применение математических знаний в решении как математических, так и прикладных задач, включают математический язык и математическую символику, элементы логики;

  • 3)    методологические знания и умения, которые определяются спецификой математической деятельности и ее методами как общими (эвристическими и логическими), так и частными, характерными для конкретной темы;

  • 4)    мировоззренческие знания, которые обеспечивают представления об особенностях математических методов познания действительности; роли ведущих математических идей и понятий в развитии самого математи-

  • ческого знания и познании действительности (число, функция, уравнение, геометрические фигуры и величины и т.д.); сути метода математического моделирования; истории математики;
  • 5)    практические (применение всех описанных выше знаний и умений для изучения смежных предметных областей, решения встречающихся практических задач);

  • 6)    личностные (эмоционально-ценностные, мотивационные, смысловые).

Отметим, что здесь не идет речь о корректной классификации знаний и умений. В реальном учебном процессе их освоение и формирование должны происходить в органичном единстве и быть окрашены личностным отношением ученика ко всем видам математических знаний и математической деятельности в целом.

Статья научная