Microgreens as a rich source of immunomodulatory functional components for the prevention of COVID-19

Бесплатный доступ

SARS-CoV-2 the pathogenic agent of the ongoing pandemic of coronavirus disease has a strong transmission capacity through inhalation of air droplets leading to diseases ranging from asymptomatic to fatal. COVID-19 can cause multi-organ disorders in which inflammatory progression and oxidative stress caused by the storm release of cytokines play crucial roles. Microgreens are newly emerging superfood products in developed countries due to their high content of immunomodulators and antioxidants. consumption of fresh microgreens, shoots of many vegetables have been gaining broad popularity as a culinary trend due to its intense flavor and aroma along with its density of micro- and phytonutrients. In this study, we analysed thirteen variety microgreens content of ascorbic acid, total antioxidant capacity, total polyphenols, and chlorophyll content. We outline that fortifying salad dishes with microgreens can provide human's organism with good portion of phytonutrients as an additional barrier for securing our immunity. The results demonstrated in this paper indicate to the fact that the tested microgreens are capable to provide a means for consumer-access to larger quantities of nutrients per portion of even less than 100 grams’ plant biomass including immunomodulating antioxidants, polyphenols and ascorbic acid of which are considered of critical importance for human's immune system. Inducing microgreens to our daily salads and meals could be an easy possible way to fortify our immunity and most probably would increase the effectiveness of the fight against new coronavirus (SARS-CoV-2) and probably his other mutated variants.

Еще

Microgreens, phytochemicals, ascorbic acid, total antioxidants capacity, total phenolic contents

Короткий адрес: https://sciup.org/147238517

IDR: 147238517   |   DOI: 10.14529/food220308

Список литературы Microgreens as a rich source of immunomodulatory functional components for the prevention of COVID-19

  • Wolfe David. Superfoods: the food and medicine of the future. North Atlantic Books. 2009
  • Chen C.N., Lin C.P., Huang K.K., Chen W.C., Hsieh H.P., Liang P.H., & Hsu J.T.A. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3'-digallate (TF3). Evidence-Based Complementary and Alternative Medicine, 2005 vol. 2, no. 2, pp. 209-215. DOI: 10.1093/ecam/neh081
  • Bourgou, S., Pichette, A., Marzouk, B., & Legault, J. Antioxidant, anti-inflammatory, anticancer and antibacterial activities of extracts from Nigella sativa (black cumin) plant parts. Journal of Food Biochemistry, 2012, vol. 36, no. 5, pp. 539-546. DOI: 10.1111/j .1745-4514.2011.00567.x
  • Zhang L., Ravipati A.S., Koyyalamudi S.R., Jeong S.C., Reddy N., Smith P.T., & Wu M.J. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. Journal of agricultural and food chemistry, 2 011, vol. 59, no. 23, pp. 12361-12367. DOI: 10.1021/jf203146e
  • Leone M., Zhai D., Sareth S., Kitada S., Reed J. C ., & Pellecchia M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Research, 2003, vol. 63, no. 23, pp. 8118-8121. DOI: 10.1158/0008-5472.can-04-4054
  • Kazi Aslamuzzaman et al. A natural musaceas plant extract inhibits proteasome activity and induces apoptosis selectively in human tumor and transformed, but not normal and non-transformed, cells. International journal of molecular medicine 12.6 (2003): 879-887. DOI: 10.3892/ijmm.12.6.879
  • Solnie, J., & Fladerer J.P. Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochemistry Reviews, 2021, vol. 20, no. 4, pp. 773-795. DOI: 10.1007/s11101-020-09720-6
  • Sun J., Xiao Z., Lin L.Z., Lester G.E., Wang Q., Harnly J.M., & Chen P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS n. Journal of agricultural and food chemistry, 2013, vol. 61, no. 46, pp. 10960-10970. DOI: 10.1021/jf401802n
  • Xiao Z., Lester G.E., Luo Y., Xie Z.K., Yu L.L., & Wang Q. Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage. Food chemistry, 2014, no. 151, pp. 472-479. DOI: 10.1016/ j.foodchem.2013.11.086
  • Brazaitytè A., Sakalauskiené S., Samuoliené G., Jankauskiené J., Virsilé A., Novickovas A., & Duchovskis P. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food chemistry, 2015, no. 173, pp. 600-606. DOI: 10.1016/ j.foodchem.2014.10.077
  • Samuoliené G., Virsilé A., Brazaityté A., Jankauskiené J., Sakalauskiené S., Vastakaité V., & Duchovskis P. Blue light dosage affects carotenoids and tocopherols in microgreens. Food chemistry, 2017, no. 228, pp. 50-56. DOI: 10.1016/j.foodchem.2017.01.144
  • Abulmeaty M., Aljuraiban G.S., Shaikh S.M., ALEid N.E., Mazrou L.R.A., Turjoman A.A., & Molla H.N. The efficacy of antioxidant oral supplements on the progression of COVID-19 in non-critically ill patients: a randomized controlled trial. Antioxidants, 2021, vol. 10, no. 5, pp. 804. DOI: 10.3390/antiox10050804
  • Leisman D.E., Ronner L., Pinotti R., Taylor M.D., Sinha P., Calfee C.S., & Deutschman C.S. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. The Lancet Respiratory Medicine, 2020, vol. 8, no. 12, pp. 1233-1244. DOI: 10.1016/s2213-2600(20)30404-5
  • Ye Q., Wang B., & Mao J. The pathogenesis and treatment of the Cytokine Storm'in COVID-19. Journal of infection, 2020, vol. 80, no. 6, pp. 607-613. DOI: 10.1016/j.jinf.2020.03.037
  • Uchide N., & Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules, 2011, vol. 16, no. 3, pp. 2032-2052. DOI: 10.3390/molecules16032032
  • Komaravelli N., & Casola A. Respiratory viral infections and subversion of cellular antioxidant defenses. Journal of pharmacogenomics & pharmacoproteomics, 2014, vol. 5, no. 4. DOI: 10.4172/2153-0645.1000141
  • Hennet T., Peterhans E., & Stocker R. Alterations in antioxidant defenses in lung and liver of mice infected with influenza A virus. Journal of General Virology, 1992, vol. 73, no. 1, pp. 39-46. DOI: 10.1099/0022-1317-73-1-39
  • Sarkar K., & Sil P.C. Infectious lung diseases and endogenous oxidative stress. In Oxidative Stress in Lung Diseases, 2019, pp. 125-148. Springer, Singapore. DOI: 10.1007/978-981-13-8413-4_7
  • Garnett T. Food sustainability: problems, perspectives and solutions. Proceedings of the nutrition society, 2013, vol. 72, no. 1, pp. 29-39.
  • Tulchinsky T.H. Micronutrient deficiency conditions: global health issues. Public health reviews, 2010, vol. 32, no. 1, pp. 243-255. DOI: 10.1007/BF03391600
  • Pattnaik P., Kumar B., & Mishra D. Emerging trend of microgreens-Potential nutrient enhancer in human diet. AGRICULTURE & FOOD, 2020, no. 16.
  • Othman A.J., Eliseeva L.G., Zelenkov V.N., Latushkin V.V., & Bassel K. The nutritional profile of microgreen and mature lettuce (Lactuca sativa) grown under urban-type phytotron (ISR 0.2) conditions. Proceedings of the Voronezh State University of Engineering Technologies, 2020, vol. 82, no. 2, pp. 55-60. (In Russ.) DOI: 10.20914/2310-1202-2020-2-55-60
  • Ebert A.W., Wu T.H., & Yang R.Y. Amaranth sprouts and microgreensa homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. In Proceedings of the Regional Symposium on Sustaining Small-Scale Vegetable Production and Marketing Systems for Food and Nutrition Security, 2014, pp. 25-27, Bangkok, Thailand.
  • Kyriacou M.C., Rouphael Y., Di Gioia F., Kyratzis A., Serio F., Renna M., & Santamaria P. Micro-scale vegetable production and the rise of microgreens. Trends in food science & technology, 2016, vol. 57, pp. 103-115. DOI: 10.1016/j.tifs.2016.09.005
  • Turner E.R., Luo Y., & Buchanan R.L. Microgreen nutrition, food safety, and shelf life: A review. Journal of food science, 2020, vol. 85, no. 4, pp. 870-882. DOI: 10.1111/1750-3841.15049
  • Xiao Z., Lester G.E., Luo Y., & Wang Q. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of agricultural and Food Chemistry, 2012, vol. 60, no. 31, pp. 7644-7651. DOI: 10.1021/jf300459b
  • Eliseeva L.G., & Simina D.V. Microgreens: a newly merging product, aspects, prospectives, and disad-vantages. Proceedings of the Voronezh State University of Engineering Technologies, 2021, vol. 83, no. 1, pp. 102-107. DOI: 10.20914/2310-1202-2021-1-102-107
  • Singleton V.L., & Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phospho-tungstic acid reagents. American journal of Enology and Viticulture, 1965, vol. 16, no. 3, pp. 144-158.
  • Komarova N.V., & Kamentsev Y.S. Prakticheskoe rukovodstvo po ispol'zovaniyu sistem kapillyarnogo elektroforeza "Kapel' (Practical Guide on the Use of Kapel'Capillary Electrophoresis Systems). St. Petersburg, 2006
  • Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology, 1987, vol. 148, pp. 350-382. Academic Press. DOI: 10.1016/0076-6879(87)48036-1
  • Lichtenthaler H.K., & Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, 1983. DOI: 10.1042/bst0110591
  • Babbar N., Oberoi H.S., & Sandhu S.K. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Critical Reviews in Food Science and Nutrition, 2015, vol. 55, no. 3, pp. 319-337. DOI: 10.1080/10408398.2011.653734
  • Lee Y.H., Choo C., Watawana M.I., Jayawardena N., & Waisundara V.Y. An appraisal of eighteen commonly consumed edible plants as functional food based on their antioxidant and starch hydrolase inhibitory activities. Journal of the Science of Food and Agriculture, 2015, vol. 95, no. 14, pp. 2956-2964. DOI: 10.1002/jsfa.7039
  • Cai Y., Luo Q., Sun M., & Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life sciences, 2004, vol. 74, no. 17, pp. 2157-2184. DOI: 10.1016/j.lfs.2003.09.047
  • Dragland S., Senoo H., Wake K., Holte K., & Blomhoff R. Several culinary and medicinal herbs are important sources of dietary antioxidants. The Journal of nutrition, 2003, vol. 133, no. 5, pp. 1286-1290. DOI: 10.1093/jn/133.5.1286
  • Graefe E.U., & Veit M. Urinary metabolites of flavonoids and hydroxycinnamic acids in humans after application of a crude extract from Equisetum arvense. Phytomedicine, 1999, vol. 6, no. 4, pp. 239-246. DOI: 10.1016/S0944-7113(99)80015-4
  • Olthof M.R., Hollman P.C., & Katan M.B. Chlorogenic acid and caffeic acid are absorbed in humans. The Journal ofnutrition, 2001, vol. 131, no. 1, pp. 66-71. DOI: 10.1093/jn/131.1.66
  • Teng J., Liao P., & Wang M. The role of emerging micro-scale vegetables in human diet and health benefits - An updated review based on microgreens. Food & Function, 2021, vol. 12, no. 5, pp. 1914-1932. DOI: 10.1039/d0fo03299a
  • Majdi C., Pereira C., Dias M.I., Calhelha R.C., Alves M.J., Rhourri-Frih B., & Ferreira I.C. Phyto-chemical characterization and bioactive properties of cinnamon basil (Ocimum basilicum cv.'Cinnamon') and lemon basil (Ocimum* citriodorum). Antioxidants, 2020, vol. 9, no. 5, pp. 369. DOI: 10.3390/antiox9050369
  • Levine M., Rumsey S.C., Daruwala R., Park J.B., & Wang Y. Criteria and recommendations for vitamin C intake. Jama, 1999, vol. 281, no. 15, pp. 1415-1423. DOI: 10.1001/jama.281.15.1415
  • Levine M., Wang Y., Padayatty S.J., & Morrow J. A new recommended dietary allowance of vitamin C for healthy young women. Proceedings of the National Academy of Sciences, 2001, vol. 98, no. 17, pp. 9842-9846. DOI: 10.1073/pnas.171318198
  • Othman A.J., Eliseeva L.G., Ibragimova N.A., Zelenkov V.N., Latushkin V.V., & Nicheva D.V. Da-taset on the effect of foliar application of different concentrations of silicon dioxide and organosilicon compounds on the growth and biochemical contents of oak leaf lettuce (Lactuca sativa var. crispa) grown in phytotron conditions. Data in Brief, 2021, vol. 38, pp. 107328. DOI: 10.1016/j dib.2021.107328
  • Kim Y., Kim H., Bae S., Choi J., Lim S.Y., Lee N., & Lee W.J. Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-a/ß at the initial stage of influenza A virus (H3N2) infection. Immune network, 2013, vol. 13, no. 2, pp. 70-74. DOI: 10.4110/in.2013.13.2.70
  • Sorice A., Guerriero E., Capone F., Colonna G., Castello G., & Costantini S. Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini reviews in medicinal chemistry, 2014, vol. 14, no. 5, pp. 444-452. DOI: 10.2174/1389557514666140428112602
  • Feigen G.A. et al. Enhancement of antibody production and protection against systemic anaphylaxis by large doses of vitamin C. Research Communications in Chemical Pathology and Pharmacology, 38.2 (1982): 313-333.
  • Schwager J., Bompard A., Weber P., & Raederstorff D. Ascorbic acid modulates cell migration in differentiated HL-60 cells and peripheral blood leukocytes. Molecular nutrition & food research, 2015, vol. 59, no. 8, pp. 1513-1523. DOI: 10.1002/mnfr.201400893
  • Bozonet S.M., Carr A.C., Pullar J.M., & Vissers M. Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients, 2015, vol. 7, no. 4, pp. 2574-2588. DOI: 10.3390/nu7042574
  • Kim G.N. et al. Clinical features of herpes simplex keratitis in a Korean tertiary referral center: efficacy of oral antiviral and ascorbic acid on recurrence. Korean Journal of Ophthalmology, 2018, vol. 32, no. 5, pp. 353-360. DOI: 10.3341/kjo.2017.0131
  • Cheng R.Z. Shanghai expert consensus on COVID-19 treatment, Shanghai expert group on clinical treatment of new coronavirus disease. Chinese J Infect Dis, 2020, vol. 38.
Еще
Статья научная