Миелоидные супрессорные клетки в патогенезе критических состояний
Автор: Григорьев Евгений Валерьевич, Шукевич Д.Л., Матвеева В.Г., Пугачев С.В., Каменева Е.А., Корнелюк Р.А.
Журнал: Патология кровообращения и кардиохирургия @journal-meshalkin
Рубрика: Обзоры
Статья в выпуске: 3 т.20, 2016 года.
Бесплатный доступ
Критические состояния, независимо от причины, характеризуются формированием системного воспалительного ответа с разнонаправленными сдвигами про- и противовоспалительных медиаторов. В условиях неконтролируемого воспаления и развития персистенции полиорганной недостаточности существует вероятность формирования неконтролируемого патологического миелопоэза, что сопровождается выбросом миелоидных супрессорных клеток. Цель обзора - определить роль миелоидных супрессорных клеток в развитии иммунной супрессии в критических состояниях с позиции диагностической значимости в отношении «стерильного» и инфекционного системного воспалительного ответов.
Системный воспалительный ответ, критические состояния, миелоидные супрессорные клетки
Короткий адрес: https://sciup.org/142140754
IDR: 142140754 | DOI: 10.21688-1681
Список литературы Миелоидные супрессорные клетки в патогенезе критических состояний
- Cohen J., Opal S., Calandra T. Sepsis studies needs new direction//The Lancet Infectious Diseases. 2012. Vol. 2. No. 7. P. 503-505 DOI: 10.1016/S1473-3099(12)70136-6
- Hotchkiss R.S., Karl I.E. The pathophysiology and treatment of sepsis//The New England Journal of Medicine. 2003. Vol. 348. No. 2. P. 138-150 DOI: 10.1056/NEJMra021333
- Asehnoune K., Roquilly A., Abraham E. Innate immune dysfunction in trauma patients: from pathophysiology to treatment//Anesthesiology. 2012. Vol. 117. P. 411-416 DOI: 10.1097/ALN.0b013e31825f018d
- Boomer J.S., To K., Chang K.C. Immunosuppression in patients who die of sepsis and multiple organ failure//Journal of the American Medical Association. 2011. Vol. 306. No. 23. P. 2594-2605 DOI: 10.1001/jama.2011.1829
- Сергеев С.А., Струнин О.В., Литасова Е.Е. Роль генетического полиморфизма в развитии сепсиса у детей//Патология кровообращения и кардиохирургия. 2013. Т. 17. № 4. С. 59-62.
- Hotchkiss R.S., Swanson P.E., Freeman B.D., Tinsley K.W., Cobb J.P., Matuschak G.M., Buchman T.G., Karl I.E. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction//Crit. Care Med. 1999. Vol. 27. No. 7. P. 1230-1251.
- Noel G., Guo X., Wang Q., Schwemberger S., Byrum D., Ogle C. Postburn monocytes are the major producers of TNF-alpha in the heterogeneous splenic macrophage population//Shock. 2007. Vol. 27. No. 3. P. 312-319.
- Noel J.G., Osterburg A., Wang Q., Guo X., Byrum D., Schwemberger S., Goetzman H., Caldwell C., Ogle C.K. Thermal injury elevates the inflammatory monocyte subpopulation in multiple compartments//Shock. 2007. Vol. 28. No. 6. P. 684-693 DOI: 10.1097/shk.0b013e31805362ed
- Almand B., Clark J.I., Nikitina E., Beynen J. van, English N.R., Knight S.C., Carbone D.P., Gabrilovich D.I. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer//Journal of Immunology. 2001. Vol. 166. No. 1. P. 678-689 DOI: 10.4049/jimmunol.166.1.678
- Bronte V., Zanovello P. Regulation of immune responses by L-arginine metabolism//Nat. Rev. Immunol. 2005. Vol. 5. P. 641-654 DOI: 10.1038/nri1668
- Cuenca A.G., Delano M.J., Kelly-Scumpia K.M., Moreno C., Scumpia P.O., LaFace D.M., Heyworth P.G., Efron P.A., Moldawer L.L. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma//Molecular Medicine. 2011. Vol. 17. No. 3-4. P. 281-292 DOI: 10.2119/molmed.2010.00178
- Cuenca A.G., Moldawer L.L. Myeloid-derived suppressor cells in sepsis: friend or foe?//Intensive Care Medicine. 2012. Vol. 38. No. 6. P. 928-930.
- Derive M., Bouazza Y., Alauzet C., Gibot S. Myeloid-derived suppressor cells control microbial sepsis//Intensive Care Medicine. 2012. Vol. 38. No. 6. P. 1040-1049.
- Nagaraj S., Collazo M., Corzo C.A., Youn J.I., Ortiz M., Quiceno D., Gabrilovich D.I. Regulatory myeloid suppressor cells in health and disease//Cancer Res. 2009. Vol. 69. No. 19. P. 7503-7506 DOI: 10.1158/0008-5472.CAN-09-2152
- Ray A., Chakraborty K., Ray P. Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation//Frontiers in Cellular and Infection Microbiology. 2013. Vol. 3. P. 52 DOI: 10.3389/fcimb.2013.00052
- Bronte V., Serafini P., Mazzoni A., Segal D.M., Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions//Trends Immunol. 2003. Vol. 24. No. 6. P. 302-306. DOI: 10.1016/S1471-4906(03)00132-7.
- Bunt S.K., Sinha P., Clements V.K., Leips J., Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression//J. Immunol. 2006. Vol. 176. No. 1. P. 284-290 DOI: 10.4049/jimmunol.176.1.284
- Dilek N., de Silly R.V., Blancho G., Vanhove B. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance//Frontiers in Immunology. 2012. Vol. 3. P. 208 DOI: 10.3389/fimmu.2012.00208
- Talmadge J.E., Gabrilovich D.I. History of myeloid-derived suppressor cells//Nature Reviews Cancer. 2013. Vol. 13. No. 10. P. 739-752 DOI: 10.1038/nrc3581
- Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system//Nat. Rev. Immunol. 2009. Vol. 9. P. 162-174 DOI: 10.1038/nri2506
- Eruslanov E., Daurkin I., Ortiz J., Vieweg J., Kusmartsev S. Pivotal advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells//J. Leukoc. Biol. 2010. Vol. 88. No. 5. P. 839-848 DOI: 10.1189/jlb.1209821
- Khaled Y.S., Ammori B.J., Elkord E. Myeloid-derived suppressor cells in cancer: recent progress and prospects//Immunology and Cell Biology. 2013. Vol. 91. No. 8. P. 493-502. DOI: 10.1038/icb.2013.29.
- Kusmartsev S., Nefedova Y., Yoder D., Gabrilovich D.I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species//J. Immunol. 2004. Vol. 172. No. 2. P. 989-999. DOI: 10.4049/jimmunol.172.2.989.
- Li Q., Pan P-Y., Gu P., Xu D., Chen S-H. Role of immature myeloid Gr-1+ cells in the development of antitumor immunity//Cancer Research. 2004. Vol. 64. No. 3. P. 1130-1139 DOI: 10.1158/0008-5472.CAN-03-1715
- Corzo C.A., Cotter M.J., Cheng P. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells//Journal of Immunology. 2009. Vol. 182. No. 9. P. 5693-5701 DOI: 10.4049/jimmunol.0900092
- Kusmartsev S., Gabrilovich D.I. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species//Journal of Leukocyte Biology. 2003. Vol. 74. No. 2. P. 186-196 DOI: 10.1189/jlb.0103010
- Ochoa A.C., Zea A.H., Hernandez C., Rodriguez P.C. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma//Clin. Cancer Res. 2007. Vol. 13. No. 2. Pt. 2. P. 721s-726s DOI: 10.1158/1078-0432.CCR-06-2197
- Popovich P.J., Zeh H.J. 3rd, Ochoa J.B. Arginine and immunity//J. Nutr. 2007. Vol. 137. P. 1681S-1686S.
- Pande K., Ueda R., Machemer T., Sathe M., Tsai V., Brin E., Delano Matthew J., Van Rooijen N., McClanahan T.K., Talmadge J.E., Moldawer L.L., Phillips J.H., LaFace D.M. Cancer-induced expansion and activation of CD11b+ Gr-1+ cells predispose mice to adenoviral-triggered anaphylactoid-type reactions//Mol. Ther. 2009. Vol. 17. No. 3. P. 508-515 DOI: 10.1038/mt.2008.280
- Youn J.I., Nagaraj S., Collazo M., Gabrilovich D.I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice//Journal of Immunology. 2008. Vol. 181. No. 8. P. 5791-5802. DOI: 10.4049/jimmunol.181.8.5791.
- Makarenkova V.P., Bansal V., Matta B.M., Perez L.A., Ochoa J.B. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress//J. Immunol. 2006. Vol. 176. No. 4. P. 2085-2094 DOI: 10.4049/jimmunol.176.4.2085
- Rößner S., Voigtländer C., Wiethe C., Hänig J., Seifarth C., Lutz M.B. Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro//Eur. J. Immunol. 2005. Vol. 35. No. 12. P. 3533-3544 DOI: 10.1002/eji.200526172