Минимальные вершинные расширения цветных полных графов
Автор: Разумовский Птр Владимирович, Абросимов Михаил Борисович
Рубрика: Краткие сообщения
Статья в выпуске: 4 т.13, 2021 года.
Бесплатный доступ
Предлагаются к рассмотрению результаты поиска минимальных вершинных расширений для неориентированных цветных полных графов. Данная тематика непосредственно связана с моделированием полных отказоустойчивых технических систем с элементами различного типа в терминологии графов. Если описывать техническую систему как Σ, то ей сопоставляется некоторый граф G(Σ), в котором вершины соответствуют элементам системы Σ, а ребра - связям между ними. Тип каждого элемента выражается в сопоставлении каждой вершине графа G(Σ) некоторого цвета из множества цветов F = {1, 2…, i}. Вершинным расширением данной системы тогда является некоторый граф G(Σ), в котором введены избыточные вершины и при котором система, ему соответствующая, способна продолжать работу в присутствии k отказов любых её элементов. Полным граф называется тогда, когда любые две его вершины соединены ребром. Полные графы не имеют реберных расширений по определению - не существует способа добавить ребро в граф с максимальным количеством ребер. Другими словами, система, представленная полным графом, не способна противостоять отказам связей между своими элементами. Поэтому данная работа целиком посвящена исследованию минимальных вершинных расширений. Описываются условия существования минимальных вершинных расширений для цветных полных графов, приводятся схемы построения и формулы, по которым можно вычислить необходимое количество дополнительных ребер для построения минимального вершинного расширения цветного полного графа.
Вершинные расширения графов, полные графы, минимальные расширения графов, расширения цветных графов, цветные графы
Короткий адрес: https://sciup.org/147235830
IDR: 147235830 | DOI: 10.14529/mmph210409
Список литературы Минимальные вершинные расширения цветных полных графов
- Avižienis, A. Fault-tolerance and fault-intolerance: Complementary approaches to reliable computing / A. Avižienis // ACM SIGPLAN Notices. - 1975. - Vol. 10, Iss. 6. - P. 458-464.
- Hayes, J.P. A graph model for fault-tolerant computing system / J.P. Hayes // IEEE Trans. Comput. - 1976. - Vol. C-25, no. 9. - P. 875-884.
- Harary, F. Edge fault tolerance in graphs / F. Harary, J.P. Hayes // Networks. - 1993, Vol. 23, Iss. 2. - P. 135-142.
- Harary, F. Node fault tolerance in graphs / F. Harary, J.P. Hayes // Networks. - 1996, vol. 27, Iss. 1. - P. 19-23.
- Абросимов, М.Б. Графовые модели отказоустойчивости / М.Б. Абросимов. - Саратов: Изд-во Сарат. Ун-та, 2012. - 189 с.
- Разумовский, П.В. Построение цветных графов без проверки на изоморфизм / П.В. Разумовский, М. Б. Абросимов // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. - 2021. - Т. 21, № 2. - С. 267-277.
- Razumovsky, P.V. The search for minimal edge 1-extension of an undirected colored graph / P.V. Razumovsky // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. - 2021. - Т. 21, № 3. - P. 400-407.
- Разумовский, П.В. О минимальных вершинных 1-расширениях двухцветных полных графов / П.В. Разумовский // Материалы Международного молодежного научного форума "ЛОМОНОСОВ-2021". - М.: МАКС Пресс, 2021. https://lomonosov-msu.ru/archive/Lomonosov_2021/data/22112/124513_uid563707_report.pdf
- Богомолов, А.М. Алгебраические основы теории дискретных систем / А.М. Богомолов, В.Н. Салий. - М.: Наука, 1997. - 367 с.