Mitochondrial therapy: a vision of the outlooks for treatment of main twenty-first-century diseases

Автор: Kit O.I., Frantsiyants E.M., Neskubina I.V., Shikhlyarova A.I., Kaplieva I.V.

Журнал: Cardiometry @cardiometry

Рубрика: Review

Статья в выпуске: 22, 2022 года.

Бесплатный доступ

Mitochondria are dynamic organelles which constantly change their shape, size, and location within the cells. Mitochondrial dynamics is associated with mesenchymal metabolism or epithelial-mesenchymal transition to regulate the stem cell differentiation, proliferation, migration, and apoptosis. The transfer of mitochondria from one cell to another is necessary to improve and maintain homeostasis in an organism. Mitochondrial transplantation is a therapeutic approach that involves an introduction of healthy mitochondria into damaged organs. Recent evidence data have shown that the physiological properties of healthy mitochondria provide their ability to replace damaged mitochondria, with suggesting that replacing damaged mitochondria with healthy mitochondria may protect cells from further damage. Moreover, mitochondria can also be actively released into the extracellular space and potentially be transferred between the cells in the central nervous system. This increased interest in mitochondrial therapy calls for a deeper understanding of the mechanisms, which build the basis for mitochondrial transfer, uptake, and cellular defense. In this review, questions related to the involvement of mitochondria in the pathogenesis of cancer will be discussed. Particular attention will be paid to mitochondrial transplantation as a therapeutic approach to treat the mitochondrial dysfunction under some pathological conditions.

Еще

Mitochondrial, therapy, cancer, treatment, cell

Короткий адрес: https://sciup.org/148324593

IDR: 148324593   |   DOI: 10.18137/cardiometry.2022.22.1827

Список литературы Mitochondrial therapy: a vision of the outlooks for treatment of main twenty-first-century diseases

  • Grasso D, et sl. 2020 Mitochondria in cancer. Cell stress. 2020; 4(6):114–146. https://doi.org/10.15698cst2020.06.221.
  • Klein K, et al. Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches. Frontiers in immunology. 2020; 11: 573326. https://doi.org/10.3389/fimmu.2020.573326
  • Nomoto S, Yamashita K, Koshikawa K, Nakao A, Sidransky D. Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin Cancer Res. 2002;8(2):481–487.
  • Eng C, Kiuru M, Fernandez MJ, Aaltonen LA. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer. 2003;3(3):193–202. doi: 10.1038/nrc1013.
  • Kumari S, Badana AK, G MM, G S, Malla R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. Biomark Insights. 2018;13:1177271918755391. doi: 10.1177/1177271918755391.
  • Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017;92(5):1051–1057. doi: 10.1016/j.kint.2017.05.034.
  • Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–167. doi: 10.1016/j.molcel.2012.09.025.
  • Arakawa S, et al. Identification of a novel compound that inhibits both mitochondria-mediated necrosis and apoptosis. Biochem Biophys Res Commun. 2015;467(4):1006–1011. doi: 10.1016/j.bbrc.2015.10.022.
  • Perciavalle RM, et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol. 2012;14(6):575–583. doi: 10.1038/ncb2488.
  • Sullivan LB, Gui DY, Vander Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer. 2016;16(11):680–693. doi: 10.1038/nrc.2016.85.
  • Muzza M, et l. Oxidative stress and the subcellular localization of the telomerase reverse transcriptase (TERT) in papillary thyroid cancer. Mol Cell Endocrinol. 2016;431:54–61. doi: 10.1016/j.mce.2016.05.005.
  • Debora Grasso, Luca X. Zampieri, Tânia Capelôa, Justine A. Van de Velde, Pierre Sonveaux. Mitochondria in cancer. Cell Stress. 2020;4(6);114-146. doi: 10.15698/cst2020.06.221.
  • Mazzocca A. The Systemic-Evolutionary Theoryof the Origin of Cancer (SETOC): A New Interpretative Model of Cancer as a Complex Biological System. International journal of molecular sciences. 2019;20(19): 4885. doi:10.3390/ijms20194885.
  • Mello T, Simeone I, Galli A. Mito-Nuclear Communication in Hepatocellular Carcinoma Metabolic Rewiring. Cells. 2019;8:417. doi: 10.3390/cells8050417.
  • Xia M, et al. Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci. 2019;9:27. doi: 10.1186/s13578-019-0289-8.
  • Srinivasainagendra V, et al. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med. 2017;9:31. doi: 10.1186/s13073-017-0420-6.
  • Lee JM, et al. Mitochondrial transplantation modulates inflammation and apoptosis, alleviating tendinopathy both in vivo and in vitro. Antioxidants. 2021;10(5). doi: 10.3390/antiox10050696.
  • MG Nasoni, et al.Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic- like injury in hippocampal HT22 cells. J. Pineal Res. 2021;71(1):e12747. doi: 10.1111/jpi.1274.
  • Sophie Domhan, et al. Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS One; 2011; 6 (6): e21283. doi: 10.1371/journal.pone.0021283.
  • Swati Paliwal, Rituparna Chaudhuri, Anurag Agrawal, Sujata Mohanty. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J. Biomed. Sci. 2018; 25 (1): 31. doi: 10.1186/s12929-018-0429-1.
  • CY Chang, MZ Liang, L Chen. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl. Neurodegener. 2019; 8:17.
  • Yiming Qin, Xin Jiang, Qi Yang, Jiaqi Zhao, Qiong Zhou, Yanhong Zhou. The functions, methods, and mobility of mitochondrial transfer between cells. Front. Oncol. 2021; 11:672781. doi:/10.3389/fonc.2021.672781.
  • S Abounit, C Zurzolo. Wiring through tunneling nanotubes--from electrical signals to organelle transfer. J. Cell Sci. 2012;125 (Pt 5): 1089-1098
  • Oner Ulger, Gokhan Burcin Kubat. Therapeutic applications of mitochondrial transplantation. Biochimie. 2022;195:1-15. doi: 10.1016/j.biochi.2022.01.002.
  • D Liu, et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target Ther. 2021;6(1):65.
  • L Ren, et al. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stemcells. Front. Cell Dev. Biol. 2020;8:580070-580070.
  • AS Rambold, EL Pearce. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 2018;39(1):6-18.
  • DB Cowan, et al. Transit and integration of extracellular mitochondria in human heart cells. Sci. Rep. 2017;7(1):17450.
  • JL Gollihue, et al. Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J. Neurosci. Methods. 2017;287:1-12.
  • M Giacomello, et al. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020;21(4):204-224.
  • D Casares, PV Escribá, CA Rossell. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 2019;20(9).
  • GB Kubat, O Ulger, S Akin. Requirements for successful mitochondrial transplantation. J. Biochem. Mol. Toxicol. 2021;35(11):e22898.
  • Kei Hayashida, Ryosuke Takegawa, Muhammad Shoaib, et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. J Transl Med. 2021;19:214. doi: 10.1186/s12967-021-02878-3.
  • Hayakawa K, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–555. doi: 10.1038/nature18928.
  • Shin B, et al. Mitochondrial transplantation in myocardial ischemia and reperfusion injury. Adv Exp Med Biol. 2017;982:595–619. doi: 10.1007/978-3-319-55330-6_31.
  • Caicedo A, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep 2015; 5: 9073.
  • AJ Sercel, et al. Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery. Elife. 2021;10.
  • AS Reznichenko, C Huyser, MS Pepper. Mitochondrial transfer: implications for assisted reproductive technologies. Appl. Transl. Genom. 2016; 11:40-47.
  • W. Marin, et al. Mitochondria as a therapeutic target for cardiac ischemia-reperfusion injury (Review). Int. J. Mol. Med. 2021;47(2):485-499
  • AV Kuznetsov, et al. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants. 2019;8(10).
  • Nakamura Y, Lo EH, Hayakawa K. Placental mitochondria therapy for cerebral ischemia-reperfusion injury in mice. Stroke. 2020;51:3142–3146. doi: 10.1161/STROKEAHA.120.030152.
  • Pourmohammadi-Bejarpasi Z, et al. Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull. 2020;165:70–80. doi: 10.1016/j.brainresbull.2020.09.018.
  • Zhang Z, et al. Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury. Behav Brain Res. 2019;356:322–331. doi: 10.1016/j.bbr.2018.09.005.
  • Huang PJ, et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant. 2016;25(5):913–927. doi: 10.3727/096368915X689785.
  • Blitzer D, et al. Delayed transplantation of autologous mitochondria for cardioprotection in a porcine model. Ann Thorac Surg. 2020;109(3):711–719. doi: 10.1016/j.athoracsur.2019.06.075.
  • Guariento A, et al. Mitochondrial transplantation for myocardial protection in ex-situ-perfused hearts donated after circulatory death. J Heart Lung Transplant. 2020;S1053–2498(20):31625–31629.
  • Shin B, et al. A novel biological strategy for myocardial protection by intracoronary delivery of mitochondria: Safety and efficacy. JACC Basic Transl Sci. 2019;4(8):871–888. doi: 10.1016/j.jacbts.2019.08.007.
  • Guariento A, et al. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg. 2020;160(2):e15–e29. doi: 10.1016/j.jtcvs.2019.06.111.
  • Cowan DB, et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLOS ONE. 2016;11(8):e0160889. doi: 10.1371/journal.pone.0160889.
  • Moskowitzova K, et al. Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation. J Heart Lung Transplant. 2019;38(1):92–99. doi: 10.1016/j.healun.2018.09.025.
  • Sun X, et al. Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury. Bioact Mater. 2021; 6(7): 2058–2069. doi: 10.1016/j.bioactmat.2020.12.024.
  • Kaza AK, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg. 2017;153(4):934–943. doi: 10.1016/j.jtcvs.2016.10.077.
  • Shin B, et al. A novel biological strategy for myocardial protection by intracoronary delivery of mitochondria: Safety and efficacy. JACC Basic Transl Sci. 2019;4(8):871–888. doi: 10.1016/j.jacbts.2019.08.007.
  • Guariento A, et al. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg. 2020;160(2):e15–e29. doi: 10.1016/j.jtcvs.2019.06.111.
  • Masuzawa A, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2013;304(7):H966–H982. doi: 10.1152/ajpheart.00883.2012.
  • Orfany A, et al. Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg. 2020;71(3):1014–1026. doi: 10.1016/j.jvs.2019.03.079.
  • Moskowitzova K, et al. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2020;318(1):L78–L88. doi: 10.1152/ajplung.00221.2019.
  • Fang SY, et al. Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia. J Thorac Cardiovasc Surg. 2021; 161(5):e337–e347. doi: 10.1016/j.jtcvs.2019.10.151.
  • Ko SF, et al. Hepatic (31) P-magnetic resonance spectroscopy identified the impact of melatonin-pretreated mitochondria in acute liver ischaemia-reperfusion injury. J Cell Mol Med. 2020;24(17):10088–10099. doi: 10.1111/jcmm.15617.
  • Huang L, Nakamura Y, Lo EH, Hayakawa K. Astrocyte signaling in the neurovascular Unit After Central Nervous System Injury. Int J Mol Sci. 2019; 20:2.
  • Zhang Z, et al. Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury. Behav Brain Res. 2019; 356:322–331. doi: 10.1016/j.bbr.2018.09.005.
  • Nakamura Y, Lo EH, Hayakawa K. Placental mitochondria therapy for cerebral ischemia-reperfusion injury in mice. Stroke. 2020; 51: 3142–3146. doi: 10.1161/STROKEAHA.120.030152.
  • McCully JD, Cowan DB, Emani SM, del Nido PJ. Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion. 2017;34:127–134. doi: 10.1016/j.mito.2017.03.004.
  • Cowan DB, et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLOS ONE. 2016;11(8):e0160889. doi: 10.1371/journal.pone.0160889.
  • Rishabh C. Choudhary, et al. Pharmacological Approach for Neuroprotection After Cardiac Arrest—A Narrative Review of Current Therapies and Future Neuroprotective Cocktail. Front. Med., 18 May 2021 | https://doi.org/10.3389/fmed.2021.636651
  • Fang SY, et al. Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia. J Thorac Cardiovasc Surg. 2021;161(5): e337–e347. doi: 10.1016/j.jtcvs.2019.10.151.
  • Guariento A, et al. Mitochondrial transplantation for myocardial protection in ex-situ-perfused hearts donated after circulatory death. J Heart Lung Transplant. 2020; S1053–2498(20): 31625–31629.
  • Cowan DB, et al. Transit and integration of extracellular mitochondria in human heart cells. Sci Rep. 2017; 7(1): 17450. doi: 10.1038/s41598-017-17813-0.
  • Ramirez-Barbieri G , et al. Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion. 2019; 46: 103–115. doi: 10.1016/j.mito.2018.03.002.
Еще
Статья научная