Моделирование рисков экономической безопасности регионов России в условиях санкционного давления

Автор: Голованов О.А., Тырсин А.Н., Васильева Е.В.

Журнал: Экономические и социальные перемены: факты, тенденции, прогноз @volnc-esc

Рубрика: Вопросы теории и методологии

Статья в выпуске: 5 т.16, 2023 года.

Бесплатный доступ

Статья посвящена проблеме обеспечения экономической безопасности России в условиях усиливающегося санкционного давления. Для оценки и анализа возникающих рисков в статье предложена многофакторная модель, рассматривающая экономическую безопасность регионов России как сложную многомерную систему, на которую влияют различного рода взаимосвязанные факторы риска. Использован перечень показателей мониторинга и оценки экономической безопасности России, утвержденных Указом Президента РФ от 13 мая 2017 г. № 208. С целью моделирования рисков были установлены двухуровневые пороговые значения («мягкие» и «жесткие») показателей на основе экспертной оценки. Информационной базой исследования являются статистические данные Федеральной службы государственной статистики по России, а также данные в разрезе субъектов Уральского федерального округа по месяцам за период с января 2016 года по март 2023 года. Согласно результатам расчетов, ужесточение санкций недружественных стран негативно повлияло на обеспечение экономической безопасности как России в целом, так и отдельных субъектов Уральского федерального округа. В рамках анализируемого периода создаваемые риски значительно ниже в сравнении с последствиями пандемии COVID-19 и имеют тенденцию к сокращению. Региональный анализ свидетельствует, что наиболее значимым фактором риска выступает состояние сельского хозяйства, на которое оказали существенное влияние введенные карантинные и санкционные ограничения. Моделирование рисков экономической безопасности регионов России на основе предложенного подхода в динамике позволит в оперативном режиме оценивать текущую ситуацию и своевременно формировать управленческие рекомендации при снижении экономической безопасности.

Еще

Экономическая безопасность, риск-анализ, вероятность неблагоприятного исхода, кризис, страна, регион, санкции, пандемия

Короткий адрес: https://sciup.org/147242521

IDR: 147242521   |   DOI: 10.15838/esc.2023.5.89.3

Список литературы Моделирование рисков экономической безопасности регионов России в условиях санкционного давления

  • Авдийский В.И., Сенчагов В.К. (2014). Методологии определения пороговых значений основных (приоритетных) факторов рисков и угроз экономической безопасности хозяйствующих субъектов // Экономика. Налоги. Право. № 4. С. 73–78.
  • Анисимов А.Л. (2022). Ограничения эффективности институционализации экономического развития: на примере Стратегии экономической безопасности Российской Федерации на период до 2030 года // Финансовые рынки и банки. № 3. С. 9–11.
  • Васильев В.Л., Устюжина О.Н., Седов С.А. (2015). Риск и экономическая безопасность: взаимосвязь и методология анализа // Казанский экономический вестник. № 3 (17). С. 90–94.
  • Виссарионов А.Б., Гумеров Р.Р. (2017). Об использовании предельных (пороговых) значений индикаторов экономической безопасности Российской Федерации // Управленческие науки. Т. 7. № 3. С. 12–20.
  • Гимпельсон В.Е., Капелюшников Р.И. (2015). Российская модель рынка труда: испытание кризисом // Журнал Новой экономической ассоциации. № 2 (26). С. 249–253.
  • Глазьев С.Ю., Локосов В.В. (2012). Оценка предельно критических значений показателей состояния российского общества и их использование в управлении социально-экономическим развитием // Вестник Российской академии наук. Т. 82. № 7. С. 587–614.
  • Голяшев А.В., Григорьев Л.М., Лобанова А.А., Павлюшина В.А. (2017). Особенности выхода из рецессии: доходы населения и инфляция // Пространственная экономика. № 1. С. 99–124. DOI: 10.14530/se.2017.1.099-124
  • Гурвич Е.Т., Прилепский И.В. (2016). Влияние финансовых санкций на российскую экономику // Вопросы экономики. № 1. С. 5–35. DOI: 10.32609/0042-8736-2016-1-5-35
  • Ильенкова Н.Д. (2016). Этапы программы анализа рисков и экономической безопасности // Анализ и современные информационные технологии в обеспечении экономической безопасности бизнеса и государства: сборник научных трудов и результатов совместных научно-исследовательских проектов / РЭУ им. Г.В. Плеханова. М.: Аудитор. С. 171–175.
  • Кабанова Е.Е. (2023). Перспективы российского сельскохозяйственного комплекса в условиях санкций // Экономическое развитие России. Т. 30. № 4. С. 44–52.
  • Каранина Е.В., Максимова Н.А. (2022). Оценка рисков экономической безопасности промышленных предприятий посредством разработки модели множественной регрессии // Проблемы анализа риска. Т. 19. № 2. С. 30–38. DOI: 10.32686/1812-5220-2022-19-2-30-38
  • Колпаков А.Ю., Сафина Э.В. (2020). Оценка затрат нефтедобывающего сектора России для снижения рисков деградации вечной мерзлоты под влиянием изменений климата // Научные труды: Институт народнохозяйственного прогнозирования РАН. № 18. С. 186–200. DOI: 10.47711/2076-318-2020-186-200
  • Криворотов В.В., Калина А.В., Белик И.С. (2019). Пороговые значения индикативных показателей для диагностики экономической безопасности Российской Федерации на современном этапе // Вестник УрФУ. Серия: Экономика и управление. Т. 18. № 6. С. 892–910. DOI: 10.15826/vestnik.2019.18.6.043
  • Куклин А.А., Тырсин А.Н., Печеркина М.С., Никулина Н.Л. (2018). Риски для благосостояния в регионах: диагностика и управление (на примере УрФО) // Пространственная экономика. № 2. С. 36–51. DOI: 10.14530/se.2018.2.036-051
  • Лаврикова Ю.Г. (2017). Особенности процессов новой индустриализации в Уральском регионе // Неоиндустриально ориентированные преобразования в экономическом пространстве Уральского макрорегиона / отв. за выпуск Е.Б. Дворядкина. Екатеринбург: Уральский государственный экономический университет. С. 47–74.
  • Лобкова Е.В. (2022). Применение теории нечетких множеств в оценке рисков экономической безопасности в условиях цифровой трансформации региональной экономики // Экономические науки. № 208. С. 111–118. DOI: 10.14451/1.208.111
  • Локосов В.В. (2021). Оценка социально-экономических рисков методом предельно критических (пороговых) показателей // Народонаселение. Т. 24. № 3. С. 8–17. DOI: 10.19181/population.2021.24.3.1
  • Лукашин Ю.П. (2003). Адаптивные методы краткосрочного прогнозирования временных рядов. М.: Финансы и статистика. 416 с.
  • Митяков С.Н. (2019). Методы оценки рисков экономической безопасности // Экономическая безопасность. Т. 2. № 1. С. 23–27. DOI: 10.18334/ecsec.2.1.100618
  • Митяков С.Н., Митяков Е.С., Федосеева Т.А. (2020). Система индикаторов экономической безопасности муниципалитета как составной элемент многоуровневой системы экономической безопасности // Мир новой экономики. Т. 14. № 4. С. 67–80. DOI: 10.26794/2220-6469-2020-14-4-67-80
  • Павлов В.И. (2019). Проблемы и противоречия реализации стратегии экономической безопасности Российской Федерации на период до 2030 года // Экономическая безопасность. Т. 2. № 1. С. 39–45. DOI: 10.18334/ecsec.2.1.100621
  • Сенчагов В.К., Митяков С.Н. (2011). Использование индексного метода для оценки уровня экономической безопасности // Вестник Академии экономической безопасности МВД России. № 5. С. 41–50.
  • Серебренников С.С., Моргунов Е.В., Мамаев С.М., Шерварли И.А. (2018). О Стратегии экономической безопасности Российской Федерации на период до 2030 года // Вестник Томского государственного университета. Экономика. № 41. С. 20–28. DOI: 10.17223/19988648/41/1
  • Симачев Ю.В., Федюнина А.А., Ершова Н.В., Мисихина С.Г. (2021). Российская розничная торговля до, во время и после коронакризиса // ЭКО. № 5 (563). С. 29–52.
  • Соболева И.В., Соболев Э.Н. (2021). Открытая и латентная безработица в условиях пандемии // Экономические и социальные перемены: факты, тенденции, прогноз. Т. 14. № 5. С. 186–201. DOI 10.15838/esc.2021.5.77.11
  • Соложенцев Е.Д. (2006). Сценарное логико-вероятностное управление риском в бизнесе и технике. 2-е изд. СПб.: Бизнес-пресса. 560 с.
  • Сошникова Л.А., Тамашевич В.Н., Уебе Г., Шефер М. (1999). Многомерный статистический анализ в экономике. М.: ЮНИТИ-ДАНА. 598 с.
  • Татаркин А.И., Куклин А.А., Романова О.А. [и др.] (1997). Экономическая безопасность региона: единство теории, методологии исследования и практики. Екатеринбург: Изд-во Ур. ун-та. 237 с.
  • Тырсин А.Н., Сурина А.А. (2017). Моделирование риска в многомерных стохастических системах // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. № 39. С. 65–72. DOI: 10.17223/19988605/39/9
  • Цухло С.В. (2019). Российская промышленность в 2018 г.: стагнация, но не кризис // Экономическое развитие России. Т. 26. № 2. С. 45–48.
  • Aven T. (2019). The Science of Risk Analysis: Foundation and Practice. Routledge. DOI 10.4324/9780429029189
  • Behrensdorf J., Broggi M., Beer M. (2019). Reliability analysis of networks interconnected with copulas. ASCE-ASME. Journal of Risk and Uncertainty in Engineering Systems, Part B Mechanical Engineering, 5, 041006-9. DOI 10.1115/1.4044043
  • Benzaghta M.A., Elwalda A., Mousa M.M. et al. (2021). SWOT analysis applications: An integrative literature review. Journal of Global Business Insights, 6(1), 54–72. DOI 10.5038/2640-6489.6.1.1148
  • Bryant J., Zhang J.L. (2016). Bayesian forecasting of demographic rates for small areas: Emigration rates by age, sex, and region in New Zealand, 2014–2038. Statistica Sinica, 26, 1337–1363. DOI 10.5705/ss.2014.200t
  • Cherubini U., Luciano E., Vecchiato W. (2004). Copula Methods in Finance. Chichester, UK: Wiley.
  • Cox L.A. Jr. (2009). Risk Analysis of Complex and Uncertain Systems. Springer.
  • Devianto M.D., Fadhilla D.R. (2015). Time series modeling for risk of stock price with value at risk computation. Applied Mathematical Sciences, 9(56), 2779–2787. DOI 10.12988/ams.2015.52144
  • Ginevicius R., Gedvilaite D., Stasiukynas A., Suhajda K. (2022). Complex expert assessment of the state of business enterprises. Acta Polytechnica Hungarica, 19(2), 135–150. DOI 10.12700/APH.19.2.2022.2.8
  • Graziani R. (2020). Stochastic population forecasting: A Bayesian approach based on evaluation by experts. In: Mazzuco S., Keilman N. (Eds.). Developments in Demographic Forecasting. The Springer Series on Demographic Methods and Population Analysis, 49, 21–42. Cham: Springer. DOI 10.1007/978-3-030-42472-5_2
  • Joe H. (2014). Dependence Modeling with Copulas. New York: Chapman and Hall/CRC.
  • Liu T., Yu Z. (2022). The analysis of financial market risk based on machine learning and particle swarm optimization algorithm. EURASIP Journal on Wireless Communications and Networking, 31. DOI 10.1186/s13638-022-02117-3
Еще
Статья научная