Молекулярно-генетические подходы в диагностике рака легких

Автор: Ходырев Дмитрий Сергеевич, Никитин Алексей Георгиевич, Кулагина Наталья Сергеевна, Аверьянов Александр Вячеславович

Журнал: Клиническая практика @clinpractice

Рубрика: Обзоры

Статья в выпуске: 3-4 (23-24), 2015 года.

Бесплатный доступ

В 21 веке остро стоит проблема поиска эффективных и дешевых методов для раннего выявления рака легких. Пациенты с подозрением на злокачественное заболевание легких, как правило, подвергаются клиническим исследованиям, таким как КТ-сканирование грудной клетки и бронхоскопия. Последнее преимущественно применяется для подтверждения диагноза. Тем не менее, даже когда признаки, симптомы и рентгенологические данные указывают на то, что клинический диагноз злокачественного заболевания легких является очевидным, требуются дополнительные инвазивные процедуры для получения биологического материала, пригодного для окончательного подтверждения наличия злокачественных клеток. В настоящее время есть четкое понимание необходимости поиска биомаркеров, способных на доклинической стадии выявлять клетки рака с помощью малоинвазивных процедур.

Еще

Рак легких, биомаркеры, днк метилирование, микрорнк

Короткий адрес: https://sciup.org/14338537

IDR: 14338537

Список литературы Молекулярно-генетические подходы в диагностике рака легких

  • ВОЗ, информационный бюллетень №297. 2014.
  • Andujar P., Wang J., Descatha A., et al. p16INK4A inactivation mechanisms in non-small-cell patients with lung cancer occupationally exposed to asbestos. Lung Cancer. 2010. 67. 23-30.
  • Barshack I., Lithwick-Yanai G., Afek A., et al. MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol. Res. Pract. 2010. 206(8). 578-584.
  • Baylin S.B., Herman J.G. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet. 2000. 16. 168-174.
  • Belinsky S.A. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat. Rev. Cancer. 2004. 4.707-717.
  • Belinsky S.A., Klinge D.M., Dekker J.D., et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin. Cancer Res. 2005. 11. 6505-6511.
  • Belinsky S.A., Liechty K.C., Gentry F.D., et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res. 2006. 66. 3338-3344. 10. 600.
  • Berdasco M., Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev. Cell. 2010. 19. 698-711.
  • Bianchi F., Nicassio F., Marzi M., et al. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol. Med. 2011. 3(8). 495-503.
  • Boeri M., Verri C., Conte D., et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA. 2011. 108(9). 3713-18.
  • Boffetta P., Parkin D.M.: Cancer in developing countries. C.A. Cancer J. Clin. 1994. 44.81-90.
  • Buckingham L., Penfield Faber L., Kim A., et al. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell patients with lung cancer. Int. J. Cancer. 2010. 126. 1630-1639.
  • Calin G.A., Croce C.M.: MicroRNA signatures in human cancers. Nat. Rev. Cancer. 2006. 6. 857-866.
  • Chen C., Yin N., Yin B., et al. DNA methylation in thoracic neoplasms. Cancer Lett. 2011. 301. 7-16.
  • Cotran R.S., Kumar V., Robbins S.L. (eds): Robbins Pathologic Basis of Disease (5th ed). Philadelphia: WB Saunders. 1994.
  • de Fraipont F., Moro-Sibilot D., Michelland S., et al. Promoter methylation of genes in bronchial lavages: a marker for early diagnosis of primary and relapsing non-small cell lung cancer? Lung Cancer. 2005. 50. 199-209.
  • Deng D., Liu Z., Du Y. Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv. Genet. 2010. 71. 125-176.
  • Dietrich D., Kneip C., Raji O., et al. Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int. J. Oncol. 2012. 40. 825-832.
  • Esquela-Kerscher A., Slack F.J. Oncomirs: microRNAs with a role in cancer. Nat. Rev. Cancer. 2006. 6. 259-269.
  • Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 2007. 8. 286-298.
  • Esteller M., Corn P.G., Baylin S.B., et al. A gene hypermethylation profile of human cancer. Cancer Res. 2001. 61. 3225-3229.
  • Farazi T.A., Spitzer J.I., Morozov P., et al.: miRNAs in human cancer. J. Pathol. 2011. 223. 102-115.
  • Feng Q., Hawes S.E., Stern J.E., et al. DNA methylation in tumor and matched normal tissues from non-small cell patients with lung cancer. Cancer Epidemiol. Biomarkers Prevent. 2008. 17. 645-654.
  • Field R.W., Smith B.J., Platz C.E., et al.: Lung cancer histologic type in the surveillance, epidemiology,and end results registry versus independent review. J. Natl.Cancer Inst. 2004. 96. 1105-1107.
  • Fischer J.R., Ohnmacht U., Rieger N., et al. Prognostic significance of RASSF1A promoter methylation on survival of non-small cell patients with lung cancer treated with gemcitabine. Lung Cancer. 2007. 56. 115-123.
  • Foss K.M., Sima C., Ugolini D., et al. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J. Thorac. Oncol. 2011. 6(3). 482-488.
  • Fraga M.F., Herranz M., Espada J., et al. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res. 2004. 64. 5527-5534.
  • Girard L., Zochbauer-Muller S., Virmani A.K., et al. Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and nonsmall cell lung cancer, and loci clustering. Cancer Res. 2000. 4894-4906.
  • Grote H.J., Schmiemann V., Kiel S., et al. Aberrant methylation of the adenomatous polyposis coli promoter 1A in bronchial aspirates from patients with suspected lung cancer. Int. J. Cancer. 2004. 110. 751-55.
  • Ha T.Y.: MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Netw. 2011. 11.135-154.
  • Heller G., Zielinski C.C., Zochbauer-Muller S. Lung cancer: from single-gene methylation to methylome profiling. Cancer Metastasis Rev. 2010. 29. 95-107.
  • Hoffman P.C., Mauer A.M., Vokes E.E. Lung cancer. Lancet. 2000. 355.479-485.
  • Hong Y.S., Roh M.S., Kim N.Y., et al. Hypermethylation of p16INK4a in Korean non-small cell patients with lung cancer. J. Korean Med. Sci. 2007. 22.S32-37.
  • Hu Y.C., Sidransky D., Ahrendt S.A. Molecular detection approaches for smoking associated tumors. Oncogene. 2002. 21. 7289-7297.
  • Hussain S.P., Harris C.C.: Molecular epidemiology of human cancer: Contribution of mutation spectra studies of tumor suppressor genes. Cancer Res. 1998. 58. 4023-4037.
  • Jassem J., Skrzypski M. Markers and methods for determining risk of distant recurrence of non-small cell lung cancer in stage I-IIIA patients. 2012. Patent US2012309638 (A1).
  • Jeronimo C., Usadel H., Henrique R., et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J. Natl. Cancer. Inst. 2001. 93. 1747-1752.
  • Jones P.A., Baylin S.B. The epigenetics of cancer. Cell. 2007. 128. 683-692.
  • Jorda M., Gomez-Fernandez C., Garcia M., et al.: P63 differentiates subtypesof nonsmall cell carcinomas of lung in cytologic samples:implications in treatment selection. Cancer. 2009. 117. 46-50.
  • Kersting M., Friedl C., Kraus A., et al. Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J. Clin. Oncol. 2000. 3221-3229.
  • Khayyata S., Yun S., Pasha T., et al.: Value of P63 and CK5/6 in distinguishing squamous cell carcinoma from adenocarcinoma in lung fine-needle aspiration specimens. Diagn. Cytopathol. 2009. 37. 178-183.
  • Kim D.H., Nelson H.H., Wiencke J.K., et al. p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res. 2001. 61. 3419-3424.
  • Kim H., Kwon Y.M., Kim J.S., et al. Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J. Clin. Oncol. 2004. 22. 2363-2370.
  • Landi M.T., Zhao Y., Rotunno M., et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin. Cancer Res. 2010. 16(2). 430-441.
  • Lebanony D., Benjamin H., Gilad S., et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J. Clin. Oncol. 2009. 27(12). 2030-2037.
  • Leng S., Do K., Yingling C.M., et al. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment. Clin. Cancer Res. 2012. 18. 3387-3395.
  • Lin Q., Geng J., Ma K., et al. RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China. J. Cancer Res. Clin. Oncol. 2009. 135. 1675-1684.
  • Lu J., Getz G., Miska E.A., et al.: MicroRNA expression profiles classify human cancers. Nature. 2005. 435. 834-838.
  • Machida E.O., Brock M.V., Hooker C.M., et al. Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Res. 2006. 66. 6210-6218.
  • Maruyama R., Sugio K., Yoshino I., et al. Hypermethylation of FHIT as a prognostic marker in non-small cell lung carcinoma. Cancer. 2004. 1472-1477.
  • Mitchell P.S., Parkin R.K., Kroh E.M., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 2008. 105(30). 10513-10518.
  • Mudduluru G., Medved F., Grobholz R., et al. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer. 2007. 110. 1697-1707.
  • Mulero-Navarro S., Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit. Rev. Oncol. Hematol. 2008. 68. 1-11.
  • Nikolaidis G., Raji O.Y., Markopoulou S., et al. DNA methylation biomarkers offer improved diagnostic efficiency in lung cancer. Cancer Res. 2012. 22. 5692-5701.
  • Palmisano W.A., Divine K.K., Saccomanno G. et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000. 60. 5954-5958.
  • Pfeifer G.P., Dammann R. Methylation of the Tumor Suppressor Gene RASSF1A in Human Tumors. Biochemistry (Mosc.). 2005. 70. 576-583.
  • Ren Y., Wu Y., Lu S., et al. Compositions and methods for microRNA expression profiling in plasma of lung cancer. 2011. Patent WO2011076144 (A1).
  • Rodrguez-Paredes M., Esteller M. Cancer epigenetics reaches mainstream oncology. Nat. Med. 2011. 17. 330-339.
  • Schmidt B., Liebenberg V., Dietrich D., et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer. 2010. 10. 600.
  • Schmiemann V., Bocking A., Kazimirek M., et al. Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study. Clin. Cancer Res. 2005. 11. 7728-7734.
  • Schneider K.U., Dietrich D., Fleischhacker M., et al. Correlation of SHOX2 gene amplification and DNA methylation in lung cancer tumors. BMC Cancer. 2011. 11. 102.
  • Simkin M., Abdalla M., El-Mogy M., et al. Differences in the quantity of DNA found in the urine and saliva of smokers versus nonsmokers: implications for the timing of epigenetic events. Epigenomics. 2012. 4. 343-352.
  • Stocks P., Campbell J.M.: Lung cancer death rates among non-smokers and pipe and cigarette smokers: An evaluation in relation to air pollution by benzpyrene and other substances. Br. Med. J. 1955. 2. 923-929.
  • Stoll L.M., Johnson M.W., Burroughs F., et al.: Cytologic diagnosis and differential diagnosis of lung carcinoid tumors: a retrospective study of 63 cases with histologic correlation. Cancer Cytopathol. 2010. 118. 457-467
  • Talotta F., Cimmino A., Matarazzo M.R., et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene. 2009. 28. 73-84.
  • Tomizawa Y., Iijima H., Nomoto T., et al. Clinicopathological significance of aberrant methylation of RARbeta2 at 3p24, RASSF1A at 3p21.3, and FHIT at 3p14.2 in patients with non-small cell lung cancer. Lung Cancer. 2004. 305-312.
  • Toyooka S., Maruyama R., Toyooka K.O., et al. Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. Int. J. Cancer. 2003. 103. 153-160.
  • Toyooka S., Mitsudomi T., Soh J., et al. Molecular oncology of lung cancer. Gen. Thorac. Cardiovasc. Surg. 2011. 59. 527-537.
  • Toyooka S., Suzuki M., Tsuda T., et al. Dose effect of smoking on aberrant methylation in non-small cell lung cancers. Int. J. Cancer. 2004. 110. 462-464.
  • Vaissiere T., Hung R.J., Zaridze D., et al. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res. 2009. 69. 243-252.
  • World Health Organization: WHO Report on the Global Tobacco Epidemic, 2008: The MPOWER Package. Geneva: World Health Organization, 2008.
  • Wu Y., Lu S., Huang W., et al. Tissue-based microRNA methods for diagnisis of different subtypes of lung cancer. 2011. Patent WO2011076145 (A1).
  • Xie Y., Todd N.W., Liu Z., et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 2010. 67(2). 170-176.
  • Yanagawa N., Tamura G., Oizumi H., et al. Frequent epigenetic silencing of the p16 gene in nonsmall cell lung cancers of tobacco smokers. Jpn. J. Cancer Res. 2002. 1107-1113.
  • Yanagawa N., Tamura G., Oizumi H., et al. Inverse correlation between EGFR mutation and FHIT, RASSF1A and RUNX3 methylation in lung adenocarcinoma: relation with smoking status. Anticancer Res. 2011. 31. 1211-1214.
  • Yanaihara N., Caplen N., Bowman E., et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006. 9(3). 189-198.
  • Zheng D., Haddadin S., Wang Y., et al. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int. J. Clin. Exp. Pathol. 2011. 4(6). 575-586.
  • Zochbauer-Muller S., Minna J.D., Gazdar A.F. Aberrant DNA methylation in lung cancer: biological and clinical implications. Oncologist. 2002. 7. 451-457.
Еще
Статья научная