Motion in the gravitational field of a black hole in a synchronous coordinate system

Бесплатный доступ

Motion of a test body, or a particle, in the gravitational field of a black hole bordering dark matter is considered. The static gravitational field of extremely compressed matter is determined by solving the Einstein and Klein- Gordon equations in the synchronous coordinate system. An extremely compressed state of matter in the form of a condensate of a quantum Bose liquid is energetically more favorable than a degenerate Fermi gas. An important difference from the Schwarzschild and Kerr black holes is the absence of a singularity in the center. In a regular gravitational field, depending on the impact parameter, there are trajectories leading through the “event horizon” into the black hole, and not just passing by. At zero temperature, depending on the pair interaction of bosons, the condensate consists of components of a superfluid and an ordinary (non-superfluid) quantum liquid. The problem of the motion of a test body inside a black hole is solved analytically in the limiting case when, against the background of dominant gravity, friction with the non-superfluid component of the Bose condensate can be neglected.

Еще

Black hole, dark matter, synchronous coordinates

Короткий адрес: https://sciup.org/142240466

IDR: 142240466   |   DOI: 10.17238/issn2226-8812.2023.3-4.199-210

Список литературы Motion in the gravitational field of a black hole in a synchronous coordinate system

  • Meierovich B.E. Black Hole and Dark Matter in the Synchronous Coordinate System. Journal of Experimental and Theoretical Physics, 2023,Vol. No. 5, pp585-592. EDN: AJBTHO
  • Meierovich B.E. Static state of a black hole supported by dark matter. Universe, 2019, No. 5, 198. EDN: HMJNEA
  • Landau L.D., Lifshitz E.M. The Classical Theory of Fields. (Nauka, Moscow, 1973) (In Russian).
  • Schwarzschild K. Uberdas Gravitationsfeld eines Massenprunktes nach der Tinsteinschen Theorue. Sitzungsberichte der Koniglich Ireuischen Academie der Wissenschaften: Berlin, Germany, 1916, pp.189-196.
  • Pontryagin L.S. Ordinary Differential Equations. (Fizmatlit, Moscow, 1961).
  • Meierovich B.E. Guessing the Riddle of a Black Hole. Universe 2020, 6, 113. EDN: PTIWFE
  • Meierovich B.E. Galaxy rotation curves driven by massive vector fields. Key to the theory of the dark sector. Phys. Rev. D 2013, 87, 103510. EDN: RFBPDD
  • Landau L.D., Lifshitz E.M. Statistical Physics Part 2. (Fizmatlit, Moscow, 2000).
  • Gradshtein I.S., Ryzik I.M. Tables of integrals, summs, etc... (Fizmatlit, Moscow, 1963).
  • Kerr R.P. Gravitational field of a spinning mass as an example of an algebraically special matrics. Phys. Rev. Lett, 1963. 11, 237-238.
Еще
Статья научная