MUC16: структура, функции и роль в онкогенезе

Автор: Киселева Яна Юрьевна, Джикия Екатерина Левановна, Кулинич Татьяна Михайловна, Шишкин Александр Михайлович, Иванов Андрей Валерьевич, Боженко Владимир Константинович

Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr

Рубрика: Обзоры, лекции

Статья в выпуске: 4 т.16, 2016 года.

Бесплатный доступ

Эффективность и специфичность иммунотерапии онкологических заболеваний в значительной степени связана с наличием на поверхности злокачественных клеток белков-мишеней, которые отсутствуют или низко экспрессированы на поверхности клеток нормальных тканей. Муцин 16 (MUC16) представляет собой гликопротеин, несущий антигенную детерминанту CA125; он высоко экспрессирован на поверхности опухолевых клеток при раке яичников и аденокарциноме протоков поджелудочной железы, и, таким образом, является перспективной мишенью противоопухолевой иммунотерапии. В обзоре обсуждаются последние исследования, посвященные направленной иммунотерапии MUC16-положительных опухолей с использованием моноклональных антител, включая их применение для создания иммунотоксинов. Также рассмотрены подходы, основанные на использовании рекомбинантных химерных белков и генетически модифицированных Т-клеток, способных направленно уничтожать опухолевые клетки, экспрессирующие MUC16.

Еще

Онкомаркер, иммунотерапия

Короткий адрес: https://sciup.org/14955530

IDR: 14955530

Список литературы MUC16: структура, функции и роль в онкогенезе

  • Боженко В. К., Шрамова Е. И., Шишкин А. М. и др. Исследование свойств новых мономолекулярных химерных Т-клеточных рецепторов к раково-эмбриональному антигену. Клеточные технологии в биологии и медицине. 2013. №3. С. 174-180.
  • Кормош Н. Г., Лактионов К. П., Киселевский М. В. и др. Применение антиген -CA вакцины у онкологических больных. Российский биотерапевтический журнал. 2004. Т. 3. №. 2. С. 5-6.
  • Ярилин А. А. Иммунология: учебник. Москва: ГЭОТАР-Медиа.2010. 752 с.
  • Bast R.C., Spriggs D.R. More than a biomarker: CA125 may contribute to ovarian cancer pathogenesis. Gynecol Oncol. 2011. V. 121. N. 3. P. 429-430.
  • Berek J., Taylor P., McGuire W., et al. Oregovomab maintenance monoimmunotherapy does not improve outcomes in advanced ovarian cancer. J Clin Oncol. 2009. V. 27. N. 3. P. 418-425.
  • Berek J.S., Taylor P.T., Gordon A., et al. Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer. J Clin Oncol. 2004. V. 22. N. 17. P. 3507-3516.
  • Chekmasova A.A., Rao T.D., Nikhamin Y., et al. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res. 2010. V. 16. N. 14. P. 35943606.
  • Chen Y., Clark S., Wong T., et al. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models. Cancer Res. 2007. V. 67. N. 10. P. 4924-4932.
  • Das S., Batra S.K. Understanding the Unique Attributes of MUC16 (CA125): Potential Implications in Targeted Therapy. Cancer Res. 2015. V. 75. N. 22. P. 4669-4674.
  • Das S., Majhi P.D., Al-Mugotir M.H., et al. Membrane proximal ectodomain cleavage of MUC16 occurs in the acidifying Golgi/post-Golgi compartments. Sci Rep. 2015. V. 5. Article ID: 9759.
  • Dharma Rao T., Park K.J., Smith-Jones P., et al. Novel monoclonal antibodies against the proximal (carboxy-terminal) portions of MUC16. Appl Immunohistochem Mol Morphol. 2010. V. 18. N. 5. P. 462-472.
  • Ehlen T.G., Hoskins P.J., Miller D., et al. A pilot phase 2 study of oregovomab murine monoclonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer. Int J Gynecol Cancer. 2005. V. 15. N. 6. P. 1023-1034.
  • Felder M., Kapur A., Gonzalez-Bosquet J., et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 2014. V. 13. P. 129.
  • Garg G., Gibbs J., Belt B., et al. Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3. BMC Cancer. 2014. V. 14. P. 35.
  • Gordon A.N., Schultes B.C., Gallion H., et al. CA125-and tumor-specific T-cell responses correlate with prolonged survival in oregovomab-treated recurrent ovarian cancer patients. Gynecol Oncol. 2004. V. 94. N. 2. P. 340-351.
  • Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol. 2004. V. 5. N. 5. P. 292-302.
  • Kabawat S.E., Bast R.C., Bhan A.K., et al. Tissue distribution of a coelomic-epitheliumrelated antigen recognized by the monoclonal antibody OC125. Int J Gynecol Pathol. 1983. V. 2. N. 3. P. 275-285.
  • Kaneko O., Gong L., Zhang J., et al. A binding domain on mesothelin for CA125/MUC16. J Biol Chem. 2009. V. 284. N. 6. P. 3739-3749.
  • Koneru M., O'Cearbhaill R., Pendharkar S., et al. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J Transl Med. 2015a. V. 13. N. P. 102.
  • Koneru M, Purdon T,J, Spriggs D, et al. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology. 2015b. V. 4. N. 3. P. e994446.
  • Madiyalakan R, Sykes T,R, Dharampaul S, et al. Antiidiotype induction therapy: evidence for the induction of immune response through the idiotype network in patients with ovarian cancer after administration of anti-CA125 murine monoclonal antibody B43.13. Hybridoma. 1995. V. 14. N. 2. P. 199-203.
  • Mobus V,J, Baum R,P, Bolle M, et al. Immune responses to murine monoclonal antibody-B43.13 correlate with prolonged survival of women with recurrent ovarian cancer. Am J Obstet Gynecol. 2003. V. 189. N. 1. P. 28-36.
  • Noujaim A,A, Schultes B,C, Baum R,P, et al. Induction of CA125-specific B and T cell responses in patients injected with MAb-B43.13-evidence for antibody-mediated antigenprocessing and presentation of CA125 in vivo. Cancer Biother Radiopharm. 2001. V. 16. N. 3. P. 187-203.
  • Pfisterer J, du Bois A, Sehouli J, et al. The anti-idiotypic antibody abagovomab in patients with recurrent ovarian cancer. A phase I trial of the AGO-OVAR. Ann Oncol. 2006. V. 17. N. 10. P. 1568-1577.
  • Polakis P. Arming antibodies for cancer therapy. Curr Opin Pharmacol. 2005. V. 5. N. 4. P. 382-387.
  • Reichert J,M. Antibody-based therapeutics to watch in 2011. MAbs. 2011. V. 3. N. 1. P. 76-99.
  • Reichert J,M. Antibodies to watch in 2014. MAbs. 2014. V. 6. N. 1. P. 5-14.
  • Reichert J,M. Antibodies to watch in 2016. MAbs. 2016. V. 8. N. 2. P. 197-204.
  • Reinartz S, Kohler S, Schlebusch H, et al. Vaccination of patients with advanced ovarian carcinoma with the anti-idiotype ACA125: immunological response and survival (phase Ib/II). Clin Cancer Res. 2004. V. 10. N. 5. P. 1580-1587.
  • Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004. V. 279. N. 10. P. 9190-9198.
  • Rustin G.J, Marples M., Nelstrop A.E., et al. Use of CA-125 to define progression of ovarian cancer in patients with persistently elevated levels. J Clin Oncol. 2001. V. 19. N. 20. P. 4054-4057.
  • Sabbatini P., Dupont J., Aghajanian C., et al. Phase I study of abagovomab in patients with epithelial ovarian, fallopian tube, or primary peritoneal cancer. Clin Cancer Res. 2006. V. 12. N. 18. P. 5503-5510.
  • Sabbatini P., Harter P., Scambia G., et al. Abagovomab as maintenance therapy in patients with epithelial ovarian cancer: a phase III trial of the AGO OVAR, COGI, GINECO, and GEICO-the MIMOSA study. J Clin Oncol. 2013. V. 31. N. 12. P. 1554-1561.
  • Sadelain M., Riviere I., Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003. V. 3. N. 1. P. 35-45.
  • Shield K., Ackland M.L., Ahmed N., et al. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol Oncol. 2009. V. 113. N. 1. P. 143-148.
  • Singh A.P., Senapati S., Ponnusamy M.P., et al. Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. Lancet Oncol. 2008. V. 9. N. 11. P. 1076-1085.
  • Smyth M.J., Dunn G.P., Schreiber R.D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 2006. V. 90. P. 1-50.
  • Spitzer D., McDunn J.E., Plambeck-Suess S., et al. A genetically encoded multifunctional TRAIL trimer facilitates cell-specific targeting and tumor cell killing. Mol Cancer Ther. 2010. V. 9. N. 7. P. 2142-2151.
  • Streppel M.M., Vincent A., Mukherjee R., et al. Mucin 16 (cancer antigen 125) expression in human tissues and cell lines and correlation with clinical outcome in adenocarcinomas of the pancreas, esophagus, stomach, and colon. Hum Pathol. 2012. V. 43. N. 10. P. 17551763.
  • Su Y., Tatzel K., Wang X., et al. Mesothelin's minimal MUC16 binding moiety converts TR3 into a potent cancer therapeutic via hierarchical binding events at the plasma membrane. Oncotarget. 2016. V. 7. N. 21. P. 31534-31549.
  • Wang X., Chang W.C., Wong C.W., et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011. V. 118. N. 5. P. 1255-1263.
  • Xiang X., Feng M., Felder M., et al. HN125: A Novel Immunoadhesin Targeting MUC16 with Potential for Cancer Therapy. J Cancer. 2011. V. 2. P. 280-291.
  • Zhu Z., Yan L. Next generation of antibody therapy for cancer. Chin J Cancer. 2011. V. 30. N. 5. P. 293-302.
Еще
Статья обзорная