n-Ricci solitons and gradient Ricci solitons on f-Kenmotsu manifolds

Бесплатный доступ

The aim of the present research article is to discuss the 𝑓-Kenmotsu manifolds with respect to a semi-symmetric non-metric connection conceding an η-Ricci soliton and gradient Ricci soliton. Moreover, we prove that the second order symmetric tensor is a constant multiple of the metric tensor and parallel with respect to the semi-symmetric non-metric connection. In addition,we illustrate an example to exhibit that 3-dimensional 𝑓-Kenmotsu manifolds with a semi-symmetric non-metric connection concede an expanding η-Ricci soliton. Finally, it is shown that locally φ-symmetric 3-dimensional 𝑓-Kenmotsu manifolds with a semi-symmetric non-metric connection concede a gradient Ricci soliton.

Еще

Η-ricci solitons, gradient ricci solitons, 𝑓kenmotsu manifold, semi-symmetric non metric connection, η-einstein manifold

Короткий адрес: https://sciup.org/149131527

IDR: 149131527   |   DOI: 10.15688/mpcm.jvolsu.2020.4.3

Список литературы n-Ricci solitons and gradient Ricci solitons on f-Kenmotsu manifolds

  • Ahmad M., Rahman S., Siddiqi M.D. Semi-Invariant Submanifolds of a Neaarly Sasakian Manifold Endowed with a Semi-Symmetric Metric Connection. Bull. Allahabad Math. Soc., 2010, vol. 25, iss. 1, pp. 23-33.
  • Ahmad M., Jun J.B., Siddiqi M.D. Study of Semi-Invariant Submanifolds of a Nearly Trans-Sasakian Manifold with a Semi-Symmetric Non Metric Connection. Proceedings o/ the Jangjeon Mathematical Society, 2018, vol. 21, no. 3, pp. 555-568.
  • Bagewadi C.S., Ingalahalli G. Ricci Solitons in Lorentzian a-Sasakian Manifolds. Acta Math. Acad. Paedagog. Nyhzi, 2012, vol. 28, iss. 1, pp. 59-68.
  • Blaga A.M. n-Ricci Solitons on Lorentzian Para-Sasakian Manifolds. Filomat, 2016, vol. 30, no. 2, pp. 489-496.
  • Blaga A.M. n-Ricci Solitons on Para-Kenmotsu Manifolds. Balkan J. Geom. Appl., 2015, vol. 20, pp. 1-13.
  • Calin C., Crasmareanu M. n-Ricci Solitons on Hopf Hypersurfaces in Complex Space Forms. Rev. Roumaine Math. Pures Appl., 2012, vol. 57, no. 1, pp. 55-63.
  • Calin C., Crasmareanu M. From the Eisenhart Problem to Ricci Solitons in f-Kenmotsu Manifolds. Bulletin o/ the Malaysian Mathematical Sciences Society, 2010, vol. 33, no. 3, pp. 361-368.
  • Chakraborty D., Mishra V.N., Hui S.K. Ricci Solitons on Three Dimensional ß-Ken-motsu Manifolds with Respect to Schouten-van Kampen Connection. JUSPS-A, 2018, vol. 30, no. 1, pp. 86-91.
  • Cho J.T., Kimura M. Ricci Solitons and Real Hypersurfaces in a Complex Space Form. Tohoku math. J., 2009, vol. 61, pp. 205-212.
  • Friedmann A., Schouten J.A. Uber die Geometrie der Halbsymmetrischen Übertragung. Math. Zeitschr., 1924, vol. 21, pp. 211-223.
  • Hamilton R.S. The Ricci Flow on Surfaces. Mathematics and General Relativity. Santa Cruz, Amer. Math. Soc., 1988, vol. 71, pp. 237-262.
  • Janssens D., Vanhecke L. Almost Contact Structures and Curvature Tensors. Kodai Math. J., 1981, vol. 4, no. 1, pp. 1-27.
  • Kenmotsu K. A Class of Almost Contact Riemannian Manifolds. Tohoku Math. J., 1972, vol. 24, no. 2, pp. 93-103.
  • Nagaraja H.G., Premalatha C.R. Ricci Solitons in Kenmotsu Manifolds. J. Math. Anal., 2012, vol. 3, no. 2, pp. 18-24.
  • Olszak Z., Rosca R. Normal Locally Conformal Almost Cosymplectic Manifolds. Publicationes Mathematicae Debrecen, 1991, vol. 39, no. 3, pp. 315-323.
  • Perelman G. Ricci Flow with Surgery on Three Manifolds. arXiv.org. URL: https://arxiv.org/abs/math/0303109.
  • Sengupta J., De U.C., Binh T.Q. On a Type of Semi-Symmetric Non-Metric Connection on a Riemannian Manifold. Indian Journal o/ Pure and Applied Mathematics, 2000, vol. 31, pp. 1659-1670.
  • Sharma R. Certain Results on K-Contact and (k, |j.)-Contact Manifolds. J. Geom., 2008, vol. 89, no. 1-2, pp. 138-147.
  • Siddiqi M.D., Ahmad M., Ojha J.P. CE-Submanifolds of a Nearly Trans-Hyperpolic Sasakian Manifold with Semi-Symmetric Non Metric CSonnection. A/r. Diaspora J. Math. (N.S.), 2014, vol. 17, no. 1, pp. 93-105.
  • Tripathi M.M. Ricci Solitons in Contact Metric Manifolds. arXiv.org. URL: https://arxiv.org/abs/0801.4222.
  • Turan M., De U.C., Yildiz A. Ricci Solitons and Gradient Ricci Solitons on 3-Dimensional Trans-Sasakian Manifolds. Filomat, 2012, vol. 26, no. 2, pp. 363-370.
  • Yildiz A., De U.C., Turan M. On 3-Dimensional /-Kenmotsu Manifolds and Ricci Solitons. Ukrainian Mathematical Journal, 2013, vol. 65, no. 5, pp. 620-628.
Еще
Статья научная