Статьи журнала - Nanotechnologies in Construction: A Scientific Internet-Journal

Все статьи: 452

Controlling the structural formation of porized cement composites in the production of thermally efficient enclosure structures of enhanced quality

Controlling the structural formation of porized cement composites in the production of thermally efficient enclosure structures of enhanced quality

Aleksei B. Steshenko, Aleksander I. Kudyakov, Aleksandr S. Inozemtcev, Sergei S. Inozemtcev

Статья научная

Introduction. Research to improve the quality of foam concrete products through targeted control of technological processes of structure formation of cement-based compositions is relevant. The strength of foam concrete is significantly influenced by the adhesion strength of the hardened cement paste to the aggregate. This article discusses methods of chemical and mechanochemical activation of foam concrete filler with glyoxal-containing additives, interaction with hydration products of binders and increasing the strength of the contact zone. The quality of foam concrete can be improved by controlling the properties of the contact zone. Materials and methods. The study was conducted using standard test procedures specified in national standards. Results. With preliminary chemical and mechano-chemical exposure of the sand surface to glyoxal-containing additives and its subsequent introduction into the foam concrete mixture the grade of strength of foam concrete increases to B1 while maintaining the average density grade D500 in comparison with foam concrete of the control composition, while the shrinkage value decreases by 20–38.5% and thermal conductivity coefficient by 37%. Conclusion. The use of glyoxal-based additives in foam concrete mixtures by pre-activating the sand surface can improve the quality of cement foam concrete.

Бесплатно

Conversion of limestone-limestone mining waste by impregnation with polysulfide solutions

Conversion of limestone-limestone mining waste by impregnation with polysulfide solutions

Massalimov I.A., Massalimov B.I., Akhmetshin B.S., Urakaev F.K., Burkitbaev M.M.

Статья научная

The data of studies on the effectiveness of impregnating Aquastat waste generated as a result of the development of limestone-shell rock deposits are presented. As a result of sand impregnation, the water absorption coefficient as a result underwent a significant decrease from 7 to 17 times, while the water absorption coefficient decreases from 32.5% for the initial to 1.9% impregnated. Even treatment with low concentrated (ρ = 1.17 g / cm3) calcium polysulfide solution made the water absorption coefficient to decrease to a value of 4.5%. As a result of impregnation of crushed stone from limestone-limestone with a solution of calcium polysulfide, the water absorption coefficient decreases from 25.0% for untreated to 5.2% for treated, and the decrease in the coefficient of water absorption is greater for concentrated solutions. It was found that a solution density of 1.24 g/cm3 is sufficient to reduce the water absorption coefficient to a value of 5.2%, the same as for a density value of 1.35 g/cm3. Comparison of the results of impregnation with «Aquastat» solution and sulfur melt showed that as a result of treatment with sulfur melt, the water absorption coefficient decreases by 13.3 and strength increases by 2 times, and as a result of impregnation with «Aquastat» solution decreases by 4.62%, strength increases by 1.35 times. Despite the high efficiency of sulfur melt processing, such treatment has drawbacks associated with the use of autoclave technology and high temperatures. The results of the modification of sand and crushed stone from shell rock by impregnating it with the «Aquastat» solution, a significant decrease in the water absorption parameter, an increase in compressive strength, revealed the possibility of using impregnated crushed stone as the layer material lying at the base of the road structures of local roads in the form of crushed stone and sand instead of the more expensive imported crushed stone.

Бесплатно

Creation of a composite material based on plant-based components. Nanotechnologies in construction

Creation of a composite material based on plant-based components. Nanotechnologies in construction

Cherkashina N.I., Pavlenko Z.V., Domarev S.N., Ruchiy A.Yu., Solgalov V.V.

Статья научная

Introduction. The study is aimed at analyzing the possibility of creating a building composite material based on amylose and amylopectin with the introduction of crushed walnut shells as a filler. Materials and methods of research. To obtain the composite, the following components were used: distilled water, potato starch (NevaReaktiv, St. Petersburg, Russia), acetic acid 70% (NevaReaktiv, St. Petersburg, Russia), highly dispersed walnut shell powder. For this research, we used walnut shells of the Chandler variety (engrafted) collected form the Belgorod region. The composite was produced in several stages. At the first stage, a mixture of starch and walnut shells was added to distilled water, followed by a pre-prepared 9% acetic acid solution. The resulting mixture was thoroughly mixed, after which it was transferred to a stainless-steel bowl and subjected to heat treatment. The resulting mixture was then pressed with solid-phase compaction method at a pressure of 72 MPa. We studied the physical and mechanical characteristic of the resulting composite, its thermal properties, as well as the hydrophobic-hydrophilic balance of the surface. Results and discussion. The resulting composite has good strength characteristics. Flexural strength at break is σf = 25.85±2.51 MPa and σf = 28.44±5.71 MPa for filling 50% weight and 75% weight. Accordingly, they put it on a par with similar composites made from more conventional thermo- and thermoset polymers. The temperature limit for the composite material exploitation has been established, the upper of which can be considered the temperature at which the polymer matrix begins to soften – 103.1 °C. Conclusion. The results obtained are crucial for understanding the mechanisms involved in creating composite materials made entirely from plant components, utilizing, among other factors, agro-industrial waste.

Бесплатно

Dear colleagues!

Dear colleagues!

Другой

Бесплатно

Dear colleagues!

Dear colleagues!

Другой

Бесплатно

Design and research of Nielsen arch bridge with fully composite structure system

Design and research of Nielsen arch bridge with fully composite structure system

Luojin Cao, Nianqin Liu, Xiangyu Li, Wenming Que, Yong Li

Статья научная

China is the kingdom of arch bridges. Based on the principle of structural elastic potential energy standing value, the innovative application of the design theory of composite arch bridge bending and compression is presented, optimize the design of composite structural arch bridge arch axis, and propose the design and construction method of medium-bearing composite Nielsen arch bridge. The design of the medium-bearing composite Nielsen arch bridge is carried out, its structural strength, stiffness and stability are analyzed by finite element analysis. By simulating the parameters of arch axis, sagittal span ratio and arch section, the convergent composite arch axis with solid web foot section is adopted to improve the economic spanning capacity of the composite Nielsen arch bridge and expand the adaptation range of large span arch bridge in plain area or soft base area.

Бесплатно

Destruction of stable emulsions using nanodispersed fullerenes

Destruction of stable emulsions using nanodispersed fullerenes

Roza Il. Vakhitova, Diana A. Saracheva, Ilgam K. Kiyamov, Linar S. Sabitov, Vasily Iv. Oleinik

Статья научная

Introduction. This article describes the results of the destruction processes studies of stable emulsion suspension sludge systems, conducted by the authors. Destruction processes are achieved by adding nanoparticles to demulsifying compositions. Currently, there is no universal composition demulsifier that effectively destroys emulsions formed in oil sludges. Research methods. To deal with this issues, the authors have conducted research on the creation of an effective demulsifier containing nanosized particles of fullerenes. The studies were carried out with dispersed oil-slurry emulsion-suspension systems, selected from open storage ponds of enterprises of JSC «Tatoilgaz» and JSC «TAIF-NK». For the destruction of the oil-containing system of the emulsion-suspension type, a composite mixture of complex action has been developed, which includes anionic wetting agents, nonionic surfactants, flotation reagents, detergents and alkaline buffer solutions that provide the required value of a constant indicator of the acid-base balance of the aqueous medium. Results and its discussion. A composite demulsifying mixture of complex action, which increases the effectiveness of the wetting washing action of surfactants, namely, the diphilic structure of the dispersed medium changes to hydrophilic, that is, the contacts of particles having a monophilic surface with the hydrocarbon phase of the emulsion medium are broken. When particles pass into the water volume from the phase separation boundary, the layer on the surface of the emulsified water is destroyed. The dehydration time of petroleum products is reduced by almost 2 times. Conclusion. During the research, the intensification and increase of the efficiency have been successfully reached.

Бесплатно

Determination of the amount of Ca(OH)2 bound by additive nano-SiO2 in cement matrices

Determination of the amount of Ca(OH)2 bound by additive nano-SiO2 in cement matrices

Potapov V.V., Efimenko Y.V., Gorev D.S.

Статья научная

Comparison of the content of Ca(OH)2 in hardened cement matrices, which contains the additive SiO2 nanoparticles and in matrice without additives was performed by the method of thermogravimetric analysis. Alite portland cement «SsangYong» and «Denki» were used. Hydrothermal sol of «Geosil» was introduced as an additive of nanoparticles of SiO2. The amount of introduced nano-SiO2 was from 1.15 to 1.74 wt.% in respect to cement consumption. Water-cement ratio was provided at the level of W/C = 0.39–0.26. The compensating amount of polycarboxylate SVC-5Neu was 0.2–0.77 wt. %. The Ca(OH)2 content was calculated from the mass loss of the cement matrice sample in the temperature range 460–510оC. It was determined that the sol «Geosil» additive reacts quickly with Ca(OH)2 (CH) in cement matrice, significantly (up to 40%) reducing its content. By the period of 24 h sol «Geosil» binds 750 [mg CaO /g SiO2] and continues to bind CH up to 100–700 days, to the value δCaO = 1300 [mg CaO /g SiO2]. The pozzolan binding reaction Ca(OH)2 with the formation of calcium hydrosilicates may be one of the mechanisms for increasing the strength of concrete when introducing SiO2 nanoparticles.

Бесплатно

Development of a new PVC composition with reduced combustibility

Development of a new PVC composition with reduced combustibility

Mazitova A.K., Vikhareva I.N., Zaripov I.I., Mazitov R.M., Kanarekin V.I.

Статья научная

Polyvinyl chloride (PVC) is one of the mostly plasticized polymers. The plasticizers used in this case are esters of aromatic or aliphatic acids with linear or branched aliphatic alcohols with a moderate chain length. Among them, phthalates (orthophthalic acid esters with fatty alcohols) have the widest range of applications among aromatic acid esters. They are characterized by excellent compatibility not only with PVC, but also with a number of other polymers, possess good physical and mechanical properties, but are toxic compounds. Therefore, their use is gradually being replaced by low-toxic and non-toxic plasticizers. Adipic acid esters which are widely used are environmentally safe. However, their use in plastic compounds for cable products requires the introduction of special additives – flame retardants. The results of the development of a low combustible PVC formulation are described herein. The dibutoxyethyl adipate developed by us was used as a plasticizer, and industrial di-(2-ethylhexyl) phenyl phosphate – as a flame retardant. First of all, we obtained an ester of adipic acid and ethoxylated butanol with a degree of ethoxylation of 5. Conditions of its production with maximum yield are selected. The physical and chemical properties of the synthesized compound were studied. Formulations of PVC compositions based on the obtained adipate with various amounts of di-(2-ethylhexyl) phenyl phosphate were compiled. Flammability tests of PVC compounds are presented. The combustible characteristics of the cable plastic samples using the developed plasticizers comply with state standard 5960-72 with changes 3-9. The best results were obtained by using phosphorus-containing additive in an amount of 3 wt%. It is shown that small amounts of di-(2-ethylhexyl) phenyl phosphate provide fire-fighting properties.

Бесплатно

Development of an intelligent control system for the process of preparation and water transfer in the cooling circuit of an ammonia station

Development of an intelligent control system for the process of preparation and water transfer in the cooling circuit of an ammonia station

E.A. Muravyova, A.V. Kochenkov

Статья научная

Introduction. In the modern socio-economic and geopolitical development of Russia, the development of industry comes to the fore. Among the many industries, ammonia stations play the most important role. The main regularities of the process of pumping and preparing water. The process consists of six stages, this article discusses the automation of stages 1 and 2: for water treatment and pumping it out with pumps H1 and H2 from the tank P2. Products in the form of purified water are the most important criteria for subsequent production at an ammonia plant, therefore, increased requirements are imposed on the quality of finished products, including the quality of purification of the water used with the help of nanofilters. The required quality cannot be achieved without control the process in an automated mode. Development of a neural network. To control the converters frequency values during the preparation and pumping of water, an artificial neural network must be used. Its development was carried out in the Matlab environment in the Neural Network Toolbox package, input and output data were defined for this, data processing and preparation were performed, as well as the choice of the type and architecture of the neural network. The architecture of the Layer Recurrent neural network, the process of its construction and training in Matlab is described. Testing of neural networks. During testing of the Layer Recurrent network for the degree of their training, the smallest error was obtained for 30 neurons in the hidden layer. The proximity to the set values indicates the applicability of the network for controlling the parameters of frequency converters. Development of the neural network controller model in the Simulink package. The simulation of the control system in the Simulink package using a neural network controller with the Layer Recurrent architecture is performed. Checking the frequencies of the frequency converters H1 and H2 in Simulink for the level parameters in the tanks and in the tank LT1_вх, LT2_вх, LT3_вх showed that the object model works correctly, thus, the simulation of the neural network showed that the training was successful. Conclusion. As a result of the conducted research, an artificial neural network was developed to control the process of preparing and pumping water in the Matlab environment and a simulation of a neural network in the Simulink package.

Бесплатно

Development of environmentally friendly PVC compositions

Development of environmentally friendly PVC compositions

Albina R. Maskova, Gulnara U. Yarmukhametova, Diana F. Kinzyabulatova, Lyubov Z. Rolnik

Статья научная

Introduction. Polyvinyl chloride (PVC) is one of the most important polymers in the economy. Due to its versatility, this material is now found in a wide variety of products used in everyday life. A wide range of physical and mechanical properties is given to it by the use of additives, the main of which are plasticizers. The most common in terms of consumption are orthophthalic acid esters, in particular, dibutyl phthalate (DBP), dioctyl phthalate (DOP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP). Phthalates are well combined with polymers, give them high physical and mechanical properties, therefore plastic compounds based on them are widely used in the construction sector, engineering, as well as in agriculture and in everyday life. Numerous studies of products made from plasticized PVC, conducted in different countries, have established the adverse effects of DOP on human health, which led to the limitation of its areas of application. Legislative bans and growing consumer pressure are forcing PVC compound manufacturers to look for an environmentally friendly replacement for DOP. Methods and materials. In this research work, the possibility of creating more environmentally friendly PVC compounds using a mixture of plasticizers: industrial dioctyl phthalate and diisononyl phthalate and dibutoxyethyl phthalate (DBOEP) developed by us was studied. The choice of the plasticizers is based on the fact that DINP and DBOEP, in contrast to dioctyl phthalate, belong to the 3rd hazard class. Results and discussion. In the course of the correlation-regression analysis, a close functional relationship was obtained between the additives used and the characteristics of PVC, which was confirmed by the calculated coefficient of determination. Using the method of nonlinear programming applied to the constructed third-order polynomial dependencies, it was found that in the basic PVC composition formulation it is promising to replace up to 25 wt.h. DOP on DINP plasticizer. The joint use of industrial plasticizers DOP and DINP, as well as the developed DBOEP in the formulation of PVC compositions, indicates an increase in plasticity and manufacturability. This can probably be explained by the synergistic effect of the studied plasticizers. The dependence of the properties and content of plasticizers DBOEP and DINP in the form of a second-order surface was studied on the basis of the obtained experimental data, the level lines of the constructed function of two variables were studied, as a result of which it was found that the greatest effect is achieved at a dosage of: DOP – 25 wt.h., DINP – 5 wt.h. and DBOEF – 20 wt.h. Conclusion. The obtained research results show that the proposed formulation of the PVC composition makes it possible to reduce the toxicity of the plasticizers used by 50 % and improve the physical, mechanical and technological characteristics of the compounds.

Бесплатно

Development of heavy metal-based nanostructured complex technology for use in building mortar

Development of heavy metal-based nanostructured complex technology for use in building mortar

Vladimir M. Ilin, Evgeni V. Boev, Aigul' A. Islamutdinova, El'mira K. Aminova

Статья научная

Introduction. Heavy metals (copper, zinc, nickel, lead, chromium, cobalt, cadmium) get into constructional materials with natural and man-made raw materials. The chemical and mineralogical composition of large-tonnage wastes from the petrochemical industry is perfect for constructional materials production. Heavy metals in constructional compositions provide high strength and frost resistance. Currently, nanostructured metal-containing complexes are used in the production of mortars. Therefore, it is necessary to ensure the reliable binding of heavy metals into structurally stable compounds to avoid their emission and secondary environmental pollution. The steadily growing volumes of sludge reservoirs with high concentrations of heavy metals such as chromium (Cr +6), copper (+2), lead (+2), iron (+2), and Fe (+3) cause particular interest to researchers. Qualified extraction of the listed metals and binding them as nanocomponents in the composition of the complexing agent will ensure the creation of a nanostructural composition in the recipe for the preparation of mortar for various purposes. Methods and materials. Sorption methods are the main way to isolate heavy metals. The paper proposes a method for the production of alkyleneaminopolycarboxylic acids and studies its ability to form nanometallic complex compounds for the extraction of heavy metals. Results and discussions. In order to bind metal nanoparticles in oil sludge, the efficiency of the produced compounds, carboxymethyl derivatives of hexamine, was investigated. Optimum synthesis conditions were selected and the structure of the obtained complexing agents was proved by infrared and ultraviolet radiation methods as well as by the method of nuclear magnetic resonance. Conclusion. The resulting nanostructured additions have binding properties that provide high adhesion of the heavy metal to the organic substrate and mortar components, which makes it possible to provide a strong composition that maintains operational properties that meet technical requirements.

Бесплатно

Development of technology for obtaining anticorrosive nanostructured polyalkenylamide-succinimide coatings in construction

Development of technology for obtaining anticorrosive nanostructured polyalkenylamide-succinimide coatings in construction

Evgeny V. Boev, Aigul A. Islamutdinova, Elmira K. Aminova

Статья научная

Introduction. At present, the use of polymer coatings in the protection of metallic materials and structures is becoming popular in the construction industry. It is especially important to obtain nanostructured polymer insulating materials with high anticorrosive properties in order to ensure the service life of the equipment of the fuel and energy complex. Technological equipment during the extraction, transportation, processing of petrochemical raw materials is subject to regular exposure to aggressive environments. Damage to production equipment causes annual environmental damage and human health and material burden on the enterprise. The introduction of heteroatoms into the structure of the polymer molecule helps to improve the physico-chemical characteristics of polymer coatings, in particular, to increase the protective properties, since natural and synthetic polymer compounds represent a large cluster of supramolecular structures located in a certain sequence. Methods and materials. A technology has been developed for obtaining new polymeric nanostructured alkenylsuccinimides with anticorrosive properties, which can be used as part of lubricating coatings in various industries, including construction. Alkenylsuccinimides were tested according to TS 38101147-77 for succinimide additives and showed compliance with their standards TS 38101247-77. Results and discussions. In the course of the research a resource-saving non-waste technology of obtaining a nanostructured polymer additive with polyamines as a nanostructuring base to provide an anticorrosive effect has been developed. Conclusion. The obtained compounds based on triethylenetetramine, tetraethylenepentamine, alkenylsuccinic anhydride can be used as effective polymeric anticorrosion additives in the processing of metal materials and structures in the construction industry.

Бесплатно

Digital twin of a building as the basis for the application of nanotechnologies in construction

Digital twin of a building as the basis for the application of nanotechnologies in construction

Kotlyarevskaya A.V., Klimenko K.E.

Статья научная

Introduction. The purpose of the conducted research is to analyze the possibilities provided by the “digital city” system and the prospects for the application of nanotechnologies. The objective of the research is to determine the possibility of digitalization in city management and the process of making more substantiated decisions regarding real estate operation. The practical application opportunities of the research results are due to the feasibility of implementing the author's approach to analyzing the operation of urban systems in general and “smart home” in particular. Methods and materials. The article explores the concept of “digital twin of a building,” its functions, components, features of construction and operation using digital twin technologies. The concept of digitalization is characterized, as well as mechanisms for introducing innovations into urban life. It is demonstrated that the “digital city” incorporates various innovative technologies: Internet of Things, artificial intelligence, data analytics, cloud computing, etc. The technologies utilized by the “digital city" not only collect data on urban life but also employ obtained data for managing electricity supply, waste collection, ensuring people's safety, and as elucidated in the article, transportation systems. Discussion. Digitization in urban management helps to create a more convenient and sustainable urban environment, a goal pursued by the governments of many countries. The implementation of sensors, detectors, and the analysis of data obtained from them provides an opportunity to improve the quality of life for urban residents and increase the efficiency of resource utilization. As a pleasant “bonus,” all of this allows making the living environment of citizens more environmentally friendly, addressing an issue that has been a “headache” for many governments – the issue of greening human existence in the city. After all, reducing the number of traffic jams automatically reduces the amount of carbon dioxide emissions, and turning on city lighting based on sensor signals saves electricity due to a reduction of consumed kilowatts since the bulbs are not unnecessarily lit. To address these issues, the use of nanotechnologies is proposed, which will enable ordinary building materials to acquire new unique properties. The emergence of nanotechnologies and their application can solve the problem of energy conservation in the construction industry. Moreover, nanotechnologies not only allow for the production of new products with unique properties but also enhance the efficiency of materials used in construction. In this regard, the key question for determining the application of nanotechnologies is the exploration of their integration into the digitization system of city management, which already incorporates a multitude of innovations and new technologies that help optimize the work of municipal services and improve the quality of life for urban residents. Conclusions. The author concludes that the provision of services by many urban services is based on 3D design technologies, as well as data collected within the framework of the “digital city” system.

Бесплатно

Effect of laser modification on composite films with nanodispersed SiO2

Effect of laser modification on composite films with nanodispersed SiO2

Natalia I. Cherkashina, Vyacheslav I. Pavlenko, Andrey I. Gorodov, Daria A. Ryzhikh, Elena V. Forova

Статья научная

Introduction. This research is aimed at studying the effect of laser modification on composite films obtained on the basis of polyimide track (nuclear) membranes and filled with nanodispersed SiO2; to change their optical and structural properties. Materials and research methods. Polyimide track (nuclear) membranes were used as a polymer matrix. Track diameter is 200 nm, membrane thickness is 25 μm. The tracks were filled with nanosized SiO2 by hydrolysis of tetraethoxysilane in the presence of track membranes. For composite film surface modification, we used ytterbium pulsed fiber laser Minimarker 2-20 A4 PA. We studied the change in the surface microscopy of composite films, their optical density, IR-Fourier spectra and surface wettability depending on laser treatment. Results and discussion. The authors have found the possibility of creating a composite film based on a polyimide track (nuclear) membrane and nanodispersed SiO2 by hydrolysis of tetraethoxysilane in the presence of a membrane. It is shown with the energy dispersive analysis method that silicon oxide has completely filled the pore volume of the track membrane. Laser modification of the composite material surface (composite film) leads to an increase in the contact angle of wetting from θ = 66.75 ± 1.55° to θ = 101.52 ± 3.03°. Thus, the material acquires hydrophobic properties. Also, the laser films modification has a positive effect on the transmittance of the films, namely, this coefficient increases. The greatest change is observed in the infrared region of еmitted spectrum, the average increase in transmission is +70.48%. Conclusion. The obtained results of the study are of great importance for understanding the mechanisms of creating composite films with improved optical properties, which can later be used to create composite films with desired optical properties for various applications.

Бесплатно

Effect of nanofibrillar cellulose on the cement paste setting kinetics

Effect of nanofibrillar cellulose on the cement paste setting kinetics

Pukharenko Yu.V., Khrenov G.M., Tkachenko V.I.

Статья научная

Introduction. The study addresses the effect of nanofibrillar cellulose (NFC) on the setting process of cement paste during the first hours of gauging. A brief justification of the research topic relevance is given. It has been noted that the modification of cement materials by nanoscale additives has sparked significant scientific and practical interest in recent years. NFC has emerged as one such additive, and the potential impacts of its incorporation into cement systems are currently under active investigation. The study aims at investigating the effect of NFC on the cement paste setting kinetics during the first hours of gauging. Materials and methods. We present the materials used in the research and their characteristics, in particular, two types of cement characterized by the presence or absence of false setting, as well as cement paste compositions with different NFC consumption (from 0 to 0.24% of dry matter by weight of cement). The technique of measuring conditional viscosity in time with a laboratory rheometer and a special measuring system is described. Results. The results of cement paste tests are presented in the form of setting process diagrams. Discussion. The results obtained and experimental data are given. The complex character of NFC influence on the cement paste setting kinetics has been noted, which depends on the cement quality and additive consumption. For cement without signs of false setting, a decrease in setting onset time was observed when increasing the NFC content. Conversely, increase in the amount of NFC leads to an increase in the setting onset time for cements with signs of false setting. Conclusion. NFC has a noticeable effect on cement paste setting kinetics in the first 3 hours: it accelerates the process when using cement without false setting and slows down the setting when using cement with false setting.

Бесплатно

Effect of the active powder of discretely devulcanized rubber on bitumen properties at low temperatures

Effect of the active powder of discretely devulcanized rubber on bitumen properties at low temperatures

Viktoria N. Gorbatova, Irina V. Gordeeva, Tatyana V. Dudareva, Irina A. Krasotkina, Vadim G. Nikol'skii, Victor M. Egorov

Статья научная

Introduction. In the article the use of powder elastomeric modifier capable of rapid breakdown into micro- and nanofragments upon contact with hot bitumen to improve the low-temperature properties of bitumen is presented. The indicators of resistance to cracking are determined by various methods and their dependence on the thermal history of the samples. Methods and Materials. At temperatures up to –36оC the oscillatory rheological tests (4-mm DSR test) of RTFO-aged samples of bitumen BND 60/90 and modified binder (MB) which contain the active powder of discretely devulcanized rubber (APDDR) produced by high-temperature shear-induced grinding from the crumb rubber of worn tires have been conducted. MB was prepared by mixing bitumen (3 min; 160оC and 600 rpm) with 12.5 wt.% APDDR. Results and Discussion. The effect of the test parameters on the rheological parameters has been studied. Structural transitions in bitumen and MB by methods of differential scanning calorimetry (DSC) and the cracking temperature of the same samples in static conditions in the ABCD test were detected. It is revealed: a decrease in the temperature of actual cracking of the MB sample compared to bitumen. Conclusion. It is shown that APDDR as a modifier affects the structure of bitumen and reduces the temperature sensitivity of bitumen to external influences.

Бесплатно

Effective mineral additive on the basis of wastes of petrochemical plants for a concrete structural mix

Effective mineral additive on the basis of wastes of petrochemical plants for a concrete structural mix

Badikova A.D., Sakhibgareev S.R., Fedina R.A., Rakhimov M.N., Tsadkin M.A.

Статья научная

The use of concrete in building allows obtaining reliable and long-lasting operation of buildings, but such conditions require concrete with specified characteristics. Today hardly one can produce a concrete structural mix of high quality without any additives. To control actively the structure and properties of a concrete mix and concrete, along with chemical additives, mineral additives are used. The mineral additives are the powders of various mineral nature, obtained from natural or man-made raw materials: ground slag, rocks, etc. The article introduces the method of obtaining a mineral additive for a structural mix, in particularly for concrete. Qualitative characteristics of the additive obtained were studied as follows: the index of the degree of grinding to be equal to 1, standard consistency (normal density) – (180±5) mm with a mass ratio of «additive: water») – 100: 70, setting time – beginning 20 min, water absorption 0.27%, water content 9.65%, the proportion of insoluble residue in hydrochloric acid solution is 1.70%. Implementation of the additive in the concrete composition has shown that the quality of the product does not fall, and the actual strength is 250.7 kgf/cm2, which is slightly higher than the strength of the concrete sample without an additive. It was determined that the quality of concrete products with a mineral additive corresponds to GOST as follows: density 1775 kg/m3; mass humidity 0.3%; volume humidity 0.5%. The introduction of a structural mix will significantly improve the properties of a concrete structural mix and will also reduce the fuel resources consumption for production of the concrete structural mix, products and constructions of its basis.

Бесплатно

Effective use of dry foaming agents in the manufacture of foam gypsum thermal insulation nanocompositions

Effective use of dry foaming agents in the manufacture of foam gypsum thermal insulation nanocompositions

Ruslan I. Shigapov, Dmitry A. Sinitsin, Rauf M. Khalikov, Elena A. Solovyeva, Igor V. Nedoseko

Статья научная

Introduction. The elaboration of foamed eco-friendly gypsum nanocomposites with low specific gravity, high thermal insulation, operational and technical and economic characteristics remains an urgent task. Controlled hardening of gypsum foam nanoassemblers using dry foaming agents is a promising direction in the technology of production of heat-insulating building materials. Methods and materials. The production of a foam gypsum composition was carried out in an ejector-turbulent mixer by mixing a gypsum nanobinder with functional foaming nanoadditives. Building gypsum G5 BII was used as a binder in the work; porization of gypsum compositions was carried out using an adsorbed foaming agent PBNS. Results. The transformation of liquid-phase foaming agents into solid-phase ones by binding water allows the production of gypsum foam compositions from dry mixtures, which gives high dosing accuracy, a good degree of homogenization of components and stable characteristics of foamed gypsum nanocompositions. In production conditions, a one-storey small-sized pavilion was built using a pilot 3D printer AMT S1160, in which vertical enclosing structures are filled with foamed heat-insulating nanostructured foam gypsum. Monolithic foam gypsum nanomaterial with a density of 300–400 kg/m3 was used for insulation and sound insulation of attic floors during the overhaul of the historic building of the Veterans Hospital in Ufa. Discussion. The elaboration of technology for obtaining foam gypsum from dry mixtures is based on the advantage of manufacturing and using thermal insulation nanocompositions, which allows for significant punctuality of dosing and stable characteristics of foam gypsum building materials. Surfactants have a significant effect on the kinetics of the structure formation of the foam gypsum nanocomposition and slow down the coalescence of air bubbles. Conclusions. Nanoporous foam gypsum concrete, obtained as a result of controlled hardening, with a density of 400 kg/m3 has a thermal conductivity of 0.12 W/(m•ºС) and a compressive strength of 1.4 MPa. The compressive strength of foamed foam gypsum using a dry foaming agent on sorbents is 17% higher than the strength of a heat-insulating nanomaterial prepared using traditional technology.

Бесплатно

Efficiency of carbon nanostructures in the composition of wood-polymer composites based on polyvinyl chloride

Efficiency of carbon nanostructures in the composition of wood-polymer composites based on polyvinyl chloride

Abdrakhmanova L.A., Galeev R.R., Khantimirov A.G., Khozin V.G.

Статья

Introduction. The most effective binding agents in wood-polymer composites based on polyvinyl chloride are carboncontaining nanostructures, which improve the electrical, physical-mechanical, rheological properties, as well as the structure and durability of the composites. Their main disadvantage is a high degree of particle aggregation, which makes it difficult to mix and process them in polymer compositions. In this regard, an urgent task is to search for such carbon nanomodifiers that would have a low degree of aggregation and low cost. Methods and materials. The paper studies the effectiveness of mechanically activated petroleum cokes as binding agents in building wood-polymer composites based on polyvinyl chloride. Mechanical activation leads to the functionalization of carbon particles of coke with the formation of oxygen-containing groups on the surface. The effect of various amounts of coke (up to 10% of the mass of wood flour) is considered and the relationship between the nature of coke and their concentration in the polymer compositions with the main technological (melt flow) and operational (tensile and bending strength, high elasticity modulus, hardness, water absorption and thermal stability) indicators and supramolecular structure of woodpolymer composites has been identified. Results and discussion. With the introduction of cokes, a high degree of orientation of the supramolecular structures of the composites in the direction of extrusion of the samples is observed, which leads to an increase in the breaking strength and bending strength, as well as the high elasticity modulus. The optimal concentration of additives was determined from 0.1 to 5%. In relation to wood flour, the amount of which in the wood-polymer composition is 50 mass parts per 100 mass parts PVC. Conclusion. The introduction of mechanically activated petroleum cokes as binding agents in wood-polymer composites based on polyvinyl chloride has been carried out. Mechanical activation made it possible to reduce the aggregation of coke particles into larger agglomerates, which makes it possible to efficiently introduce the nanomodifier in dry form and to exclude the introduction of nanomodifier in the form of aqueous dispersions, which is a rather energy-intensive production operation.

Бесплатно

Журнал