Наследственный фактор метафилактики мочекаменной болезни: современное состояние вопроса
Автор: Тивтикян А.С., Савилов А.В., Охоботов Д.А., Тарасова А.А., Шершнев С.П., Самоходская Л.М., Стригунов А.А., Афанасьевская Е.В., Нестерова О.Ю., Камалов А.А.
Журнал: Экспериментальная и клиническая урология @ecuro
Рубрика: Мочекаменная болезнь
Статья в выпуске: 1 т.15, 2022 года.
Бесплатный доступ
Введение. Мочекаменная болезнь является одним из наиболее распространенных урологических заболеваний. До 50% пациентов, перенесших первый эпизод нефролитиаза, встречаются с рецидивом в течение первых 10 лет, что поднимает вопрос о необходимости метафилактики данного заболевания. При этом следует учитываться генетическую предрасположенность каждого пациента. Цель: на основе анализа литературных данных определить роль генетических факторов в развитии нефролитиаза и выявить возможности метафилактики мочекаменной болезни у пациентов с наследственным фактором. Материалы и методы. На основе анализа литературных данных, опубликованных в базах MEDLINE, EMBASE, DisGeNET, OMIM, изучены работы, посвященные наследственным факторам развития мочекаменной болезни, проведена оценка методов метафилактики различных вариантов этого заболевания. Поиск производился по ключевым словам: «генетические факторы развития мочекаменной болезни», «генетические риски идиопатического нефролитиаза», «полиморфизмы рецептора витамина D и мочекаменная болезнь». За период с 1995 по 2020 год была найдена 141 статья, относящаяся к теме обзора. В результате детальной проверки достоверности источников непосредственно для цитирования были отобраны 70 статей. Результаты. Нефролитиаз является многофакторным заболеванием, вклад в развитие которого вносят полиморфизмы различных генов. В настоящее время наибольшее значение в развитии кальций-оксалатного и кальций-фосфатного нефролитиаза придается мутациям генов SPP1, CaSR, CLDN14, VDR, KL, в развитии уратного нефролитиаза - SCL2A9. В результате различных генетических сочетаний данные мутации способны усиливать формирование камней за счет влияния на обмен кальция, фосфатов и уратов, блокировки синтеза ингибиторов камнеобразования, а также на выраженность воспаления, окислительного стресса, которые часто являются пусковым механизмом развития рецидива мочекаменной болезни. Выводы. Определение генетических маркеров метафилактики мочекаменной болезни позволит учитывать дополнительные риски развития рецидивов мочекаменной болезни в послеоперационном периоде, либо выявить пациентов в группах риска в эндемичных условиях
Мочекаменная болезнь, нефролитиаз, генетические факторы развития мочекаменной болезни, метафилактика мочекаменной болезни
Короткий адрес: https://sciup.org/142234568
IDR: 142234568
Список литературы Наследственный фактор метафилактики мочекаменной болезни: современное состояние вопроса
- Romero V., Akpinar H., Assimos D.G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 2010 Spring;12(2-3):e86-96.
- Аполихин О.И., Сивков А.В., Комарова В.А., Просянников М.Ю., Голованов С.А., Казаченко А.В., Никушина А.А., Шадеркина В.А. Заболеваемость мочекаменной болезнью в Российской Федерации (2005-2016 годы). Эксперементальная и клиническая урология 2018(4). [Apolikhin O.I., Sivkov A.V., Komarova V.A., Prosyannikov M.Yu., Golo-vanov S.A., Kazachenko A.V., Nikushina A.A., Shaderkina V. A. The incidence of urolithiasis in the Russian Federation (2005-2016). Experimental and Clinical Urology = Eksperimental-naya i klinicheskaya urologiya 2018(4). (In Russian)].
- Pearle MS, Goldfarb DS, Assimos DG, Curhan G, Denu-Ciocca CJ, Matlaga BR, et al. Medical management of kidney stones: AUA guideline. J Urol 2014;192(2):316-24. https://doi.org/10.1016/j.juro.2014.05.006.
- Goldfarb DS, Avery AR, Beara-Lasic L, Duncan GE, Goldberg J. A Twin study of genetic influences on nephrolithiasis in women and men. Kidney Int Rep 2018;4(4):535-540. https://doi.org/10.1016/j.ekir.2018.11.017.
- Taguchi K, Yasui T, Milliner DS, Hoppe B, Chi T. Genetic risk factors for idiopathic urolithiasis: a systematic review of the literature and causal network analysis. Eur Urol Focus 2017 Feb;3(1):72-81. https://doi.org/10.1016/j.euf.2017.04.010.
- Howles SA, Wiberg A, Goldsworthy M, Bayliss AL, Gluck AK, Ng M, et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. Nat Commun 2019;10(1):5175. https://doi.org/10.1038/s41467-019-13145-x.
- McKee MD, Nanci A, Khan SR. Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 1995;10(12):1913-29. https://doi.org/10.1002/jbmr.5650101211.
- Niimi K, Yasui T, Hirose M, Hamamoto S, Itoh Y, Okada A, et al. Mitochondrial permeability transition pore opening induces the initial process of renal calcium crystallization. Free Radic Biol Med 2012;52(7):1207-17. https://doi.org/10.1016/j.freeradbiomed.2012.01.005.
- Pepinsky RB, Mumford RA, Chen LL, Leone D, Amo SE, Riper GV, et al. Comparative assessment of the ligand and metal ion binding properties of integrins alpha9beta1 and alpha4beta1. Biochemistry 2002;41(22):7125-41. https://doi.org/10.1021/bi020024d
- Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR. Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney Int 1998;53(1):194-9. https://doi.org/10.1046/j.1523-1755.1998.00739.x.
- Низов А.Н. Оптимизация диагностики и лечения рецидивирующего уролитиаза: дис. ... канд. мед. наук: 14.01.23: защищена 13.02.2019: утв. Низов Алексей Николаевич. Москва 2018;117 с. [Nizov, A.N. Optimization of diagnosis and treatment of recurrent urolithiasis: dis. ... cand. honey. Sciences: 01.14.23: defended 02.13.2019: approved. Nizov Alexey Nikolaevich. Moscow 2018;117 p. (In Russian)].
- Liang CT, Barnes J. Renal expression of osteopontin and alkaline phosphatase correlates with BUN levels in aged rats. Am J Physiol 1995 Sep;269(3 Pt 2):F398-404. https://doi.org/10.1152/ajprenal.1995.269.3.F398.
- Staal A., Wijnen A.J. van, Birkenhager J.C., Pols H.A., Prahl J., DeLuca H., et al. Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin. Mol Endocrinol 1996;10(11):1444-56. https://doi.org/10.1210/mend.10.11.8923469.
- Gao B, Yasui T, Itoh Y, Li Z, Okada A, Tozawa K, et al. Association of osteopontin gene hap-lotypes with nephrolithiasis. Kidney Int 2007;72(5):592-8. https://doi.org/10.1038/sj.ki.5002345
- Liu C-C, Huang S-P, Tsai L-Y, Wu W-J, Juo S-HH, Chou Y-H, et al. The impact of osteo-pontin promoter polymorphisms on the risk of calcium urolithiasis. Clin Chim Acta 2010;411(9-10):739-43. https://doi.org/10.1016/jxca.2010.02.007
- Xiao X, Dong Z, Ye X, Yan Y, Chen X, Pan Q, et al. Association between OPN genetic variations and nephrolithiasis risk. Biomed Rep 2016;5(3):321-326. https://doi.org/10.3892/br.2016.724.
- Gogebakan B, Igci YZ, Arslan A, Igci M, Erturhan S, Oztuzcu S, et al. Association between the T-593A and C6982T polymorphisms of the osteopontin gene and risk of developing nephrolithiasis. Arch Med Res 2010;41(6):442-8. https://doi.org/10.1016/j.arcmed.2010.08.014.
- Tsuji H, Shimizu N, Nozawa M, Umekawa T, Yoshimura K, De Velasco M.A, Uemura H, Khan S.R. Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition. Urolithiasis 2014;42(3):195-202.
- Kamalov A.A. Karpov V., Nizov A., Okhobotov D.A., Respondents IN, Prityko A.A., et al. Treatment and prevention of urolithiasis in patients with stones of various locations. Global J Urology Nephrology 2018;1(8):1-5.
- Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S, Fujii Y, et al. Biomolecular mecha-nism of urinary stone formation involving osteopontin. Urol Res 2012;40(6):623-37. https://doi.org/10.1007/s00240-012-0514-y.
- Камалов А.А., Охоботов Д.А., Низов А.Н., Стригунов А.А., Афанасьевская Е.В. Роль окислительного стресса в патогенезе кальций-оксалатного уролитиаза. Русский медицинский журнал 2019(11):1. [Kamalov A.A., Okhobotov D.A., Nizov A.N., Strigunov A.A., Afanasevskaya E.V., et al. The role of oxidative stress in the pathogenesis of calcium oxalate urolithiasis. Russian Medical Journal = Russkiy meditsinskiy zhurnal 2019(11):1. (In Russian)].
- Khan SR, Glenton PA, Backov R, Talham DR. Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 2002;62(6):2062-72. https://doi.org/10.1046/j.1523-1755.2002.00676.x
- Yang X, Yang T, Li J, Yang R, Qi S, Zhao Y, et al. Metformin prevents nephrolithiasis formation by inhibiting the expression of OPN and MCP-1 in vitro and in vivo. Int J Mol Med 2019;43(4):1611-1622. https://doi.org/10.3892/ijmm.2019.4084.
- Pi M, Spurney RF, Tu Q, Hinson T, Quarles LD. Calcium-sensing receptor activation of rho involves filamin and rho-guanine nucleotide exchange factor. Endocrinology 2002;143(10):3830-8. https://doi.org/10.1210/en.2002-220240
- Yao JJ, Bai S, Karnauskas AJ, Bushinsky DA, Favus MJ. Regulation of renal calcium receptor gene expression by 1,25-dihydroxyvitamin D3 in genetic hypercalciuric stone-forming rats. J Am Soc Nephrol 2005;16(5):1300-8. https://doi.org/10.1681/ASN.2004110991
- Ba J, Brown D, Friedman PA. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol Renal Physiol 2003;285(6):F1233-43. https://doi.org/10.1152/ajprenal.00249.2003.
- Gamba G, Friedman PA. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch 2009;458(1):61-76. https://doi.org/10.1007/s00424-008-0607-1.
- Yu M, Lopez B, Dos Santos EA, Falck JR, Roman RJ. Effects of 20-HETE on Na+ transport and Na+ -K+ -ATPase activity in the thick ascending loop of Henle. Am J Physiol Regul Integr Comp Physiol 2007;292(6):R2400-5. https://doi.org/10.1152/ajpregu.00791.2006.
- Ikari A, Okude C, Sawada H, Sasaki Y, Yamazaki Y, Sugatani J, et al. Activation of a polyvalent cation-sensing receptor decreases magnesium transport via claudin-16. Biochim Bio-phys Acta 2008;1778(1):283-90. https://doi.org/10.1016/j.bbamem.2007.10.002.
- Motoyama HI, Friedman PA. Calcium-sensing receptor regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. Am J Physiol Renal Physiol 2002;283(3):F399-406. https://doi.org/10.1152/ajprenal.00346.2001.
- Blankenship KA, Williams JJ, Lawrence MS, McLeish KR, Dean WL, Arthur JM. The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA. Am J Physiol Renal Physiol 2001;280(5):F815-22. https://doi.org/10.1152/ajprenal.2001.280.5.F815.
- Bustamante M, Hasler U, Leroy V Seigneux S de, Dimitrov M, Mordasini D, et al. Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J Am Soc Nephrol 2008;19(1):109-16. https://doi.org/10.1681/ASN.2007010092.
- Renkema KY, Velic A, Dijkman HB, Verkaart S, Kemp AW van der, Nowik M, et al. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 2009;20(8):1705-13. https://doi.org/10.1681/ASN.2008111195.
- Vezzoli G, Terranegra A, Rainone F, Arcidiacono T, Cozzolino M, Aloia A, et al. Calcium-sensing receptor and calcium kidney stones. J Transl Med 2011;22(9):201. https://doi.org/10.1186/1479-5876-9-201.
- O'Seaghdha CM, Yang Q, Glazer NL, Leak TS, Dehghan A, Smith AV, et al. Common variants in the calcium-sensing receptor gene are associated with total serum calcium levels. Hum Mol Genet 2010;19(21):4296-303. https://doi.org/10.1093/hmg/ddq342.
- Corbetta S, Eller-Vainicher C, Filopanti M, Saeli P, Vezzoli G, Arcidiacono T, et al. R990G polymorphism of the calcium-sensing receptor and renal calcium excretion in patients with primary hyperparathyroidism. Eur J Endocrinol 2006;155(5):687-92. https://doi.org/10.1530/ eje.1.02286.
- Vezzoli G, Terranegra A, Arcidiacono T., Gambaro G., Milanesi L, Mosca E, Soldati L. Calcium kidney stones are associated with a haplotype of the calcium-sensing receptor gene regulatory region. Nephrol Dial Transplan 2010;25(7):2245-52. https://doi.org/10.1093/ ndt/gfp760.
- Vezzoli G, Terranegra A, Aloia A, Arcidiacono T, Milanesi L, Mosca E, et al. Decreased transcriptional activity of calcium-sensing receptor gene promoter 1 is associated with calcium nephrolithiasis. J Clin Endocrinol Metab 2013;98(9):3839-47. https://doi.org/10.1210/ jc.2013-1834.
- Oddsson A, Sulem P, Helgason H, Edvardsson VO, Thorleifsson G, Sveinbjornsson G, et al. Common and rare variants associated with kidney stones and biochemical traits. Nat Commun 2015;14(6):7975. https://doi.org/10.1038/ncomms8975.
- Vezzoli G, Macrina L, Magni G, Arcidiacono T. Calcium-sensing receptor: evidence and hypothesis for its role in nephrolithiasis. Urolithiasis 2019;47(1):23-33. https://doi.org/10.1007/s00240-018-1096-0.
- Evan AP, Worcester EM, Coe FL, Williams JJ, Lingeman JE. Mechanisms of human kidney stone formation. Urolithiasis 2015;43 Suppl 1(01):19-32. https://doi.org/10.1007/s00240-014-0701-0.
- Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 2009;41(8):926-30. https://doi.org/10.1038/ng.404
- Guha M, Bankura B, Ghosh S, Pattanayak AK, Ghosh S, Pal DK, et al. Polymorphisms in CaSR and CLDN14 genes associated with increased risk of kidney stone disease in patients from the Eastern Part of India. PloS one 2015;10(6):e0130790. https://doi.org/10.1371/ journal.pone.0130790.
- Chou Y-H, Juo S-HH, Chiu Y-C, Liu M-E, Chen W-C, Chang C-C, et al. A polymorphism of the ORAI1 gene is associated with the risk and recurrence of calcium nephrolithiasis. J Urol 2011;185(5):1742-6. https://doi.org/10.1016/j.juro.2010.12.094.
- Karim Z, Gérard B, Bakouh N, Alili R, Leroy C, Beck L, et al. NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med 2008;359(11):1128-35. https://doi.org/10.1056/NEJMoa0802836.
- Rendina D, Esposito T, Mossetti G, De Filippo G, Gianfrancesco F, Perfetti A, et al. A functional allelic variant of the FGF23 gene is associated with renal phosphate leak in calcium nephrolithiasis. J Clin Endocrinol Metab 2012;97(5):E840-4. https://doi.org/10.1210/jc.2011-1528.
- Shakhssalim N, Basiri A, Houshmand M, Pakmanesh H, Golestan B, Azadvari M, et al. Genetic polymorphisms in calcitonin receptor gene and risk for recurrent kidney calcium stone disease. Urol Int 2014;92(3):356-62. https://doi.org/10.1159/000353348.
- Telci D, Dogan AU, Ozbek E, Polat EC, Simsek A, Cakir SS, et al. KLOTHO gene polymorphism of G395A is associated with kidney stones. Am J Nephrol 2011;33(4):337-43. https://doi.org/10.1159/000325505.
- Chang Q, Hoefs S, Kemp AW van der, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005;310(5747):490-3. https://doi.org/10.1126/science.1114245.
- Hoenderop JGJ, Leeuwen JPTM van, Eerden BCJ van der, Kersten FFJ, Kemp AWCM van der, Merillat AM, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 2003;112(12):1906-14. https://doi.org/10.1172/ JCI19826.
- Hoenderop JGJ, Nilius B, Bindels RJM. Calcium absorption across epithelia. Physiol Rev 2005;85(1):373-422. https://doi.org/10.1152/physrev.00003.2004.
- Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y I. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 2003;17(12):2393-403. https://doi.org/10.1210/me.2003-0048.
- Imura A., Tsuji Y., Murata M., Maeda R., Kubota K., Iwano A., et al.. Alpha-Klotho as a regulator of calcium homeostasis. Science (New York, N.Y.) 2007;316(5831):1615-1618.
- Murer H, Biber J. Molecular mechanisms of renal apical Na/phosphate cotransport. Annu Rev Physiol 1996(58):607-18. https://doi.org/10.1146/annurev.ph.58.030196.003135.
- Leung JC, Barac-Nieto M, Hering-Smith K, Silverstein DM. Expression of the rat renal PiT-2 phosphate transporter. Horm Metab Res 2005;37(5):265-9. https://doi.org/10.1055/ s-2005-870096.
- Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol 2007 Feb;292(2):F769-79. https://doi.org/10.1152/ajprenal.00248.2006.
- Xu C, Song R, Yang J, Jiang B, Wang X, Wu W, et al. Klotho gene polymorphism of rs3752472 is associated with the risk of urinary calculi in the population of Han nationality in Eastern China. Gene 2013526(2):494-7. https://doi.org/10.1016/j.gene.2013.06.001.
- Аполихин О.И., Сивков А.В., Константинова О.В., Сломинский П.А., Тупицына Т.В., Калиниченко Д.Н. Ранняя диагностика риска развития кальций-оксалатной формы мочекаменной болезни. Урология 2017;(3):5-9. [Apolikhin O.I., Sivkov A.V., Konstantinova O.V., Slominskii P.A., Tupitsyna T.V., Kalinichenko D.N. Early diagnosis of risk for developing calcium oxalate urolithiasis]. Urologiya = Urologiia 2017;(3):5-9. (In Russian)].
- Rendina D, De Filippo G, Gianfrancesco F, Muscariello R, Schiano di Cola M, Strazzullo P, et al. Evidence for epistatic interaction between VDR and SLC13A2 genes in the pathogenesis of hypocitraturia in recurrent calcium oxalate stone formers. J Nephrol 2017;30(3):411-418. https://doi.org/10.1007/s40620-016-0348-8.
- Rungroj N, Sudtachat N, Nettuwakul C, Sawasdee N, Praditsap O, Jungtrakoon P, et al. Association between human prothrombin variant (T165M) and kidney stone disease. PloS One 2012;7(9):e45533. https://doi.org/10.1371/journal.pone.0045533.
- Çoker Gurkan A, Arisan S, Arisan ED, Sönmez NC, Palavan Ünsal N. Association between IL-1RN VNTR, IL-1ß -511 and IL-6 (-174, -572, -597) gene polymorphisms and urolithiasis. Urol Int 2013;91(2):220-6. https://doi.org/10.1159/000345786.
- Atar A, Gedikbasi A, Sonmezay E, Kiraz ZK, Abbasoglu S, Tasci AI, et al. Serum paraoxonase-1 gene polymorphism and enzyme activity in patients with urolithiasis. Ren Fail 2016;38(3):378-82. https://doi.org/10.3109/0886022X.2015.1136872.
- Urabe Y, Tanikawa C, Takahashi A, Okada Y, Morizono T, Tsunoda T, et al. A genome-wide association study of nephrolithiasis in the Japanese population identifies novel susceptible Loci at 5q35.3, 7p14.3, and 13q14.1. PLoS Genet 2012;8(3):e1002541. https://doi.org/10.1371/journal.pgen.1002541.
- Xu Y, Zeng G, Mai Z, Ou L. Association study of DGKH gene polymorphisms with calcium oxalate stone in Chinese population. Urolithiasis 2014;42(5):379-85. https://doi.org/10.1007/s00240-014-0692-x.
- Hediger MA, Johnson RJ, Miyazaki H, Endou H. Molecular physiology of urate transport. Physiology (Bethesda) 2005(20):125-33. https://doi.org/10.1152/physiol.00039.2004.
- Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol 2007;19(2):151-7. https://doi.org/10.1097/B0R.0b013e328032781a.
- Eraly SA, Vallon V, Rieg T, Gangoiti JA, Wikoff WR, Siuzdak G, et al. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics 2008;33(2):180-92. https://doi.org/10.1152/physiolgenomics.00207.2007.
- Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 2008;5(10):el97. https://doi.org/10.1371/journal.pmed.0050197.
- Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Gieger C, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 2009;5(6):e1000504. https://doi.org/10.1371/journal.pgen.1000504.
- Ruiz A, Gautschi I, Schild L, Bonny O. Human mutations in SLC2A9 (Glut9) Affect transport capacity for urate. Front physiol 2018 Jun 18(9):476. https://doi.org/10.3389/ fphys.2018.00476.
- Hurba O, Mancikova A, Krylov V, Pavlikova M, Pavelka K, Stiburkova B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PloS One 2014;30;9(9):e107902. https://doi.org/10.1371/ journal.pone.0107902.
- Wang C, Wang J, Liu S, Liang X, Song Y, Feng L, et al. Idiopathic renal hypouricemia: A case report and literature review. Mol Med Rep 2019;20(6):5118-5124. https://doi.org/10.3892/ mmr.2019.10726.