Some problems in Holder and Besov classes
Автор: Okhlupina Olga V., Rakova Ksenia A.
Журнал: Вестник Бурятского государственного университета. Математика, информатика @vestnik-bsu-maths
Рубрика: Функциональный анализ и дифференциальные уравнения
Статья в выпуске: 4, 2020 года.
Бесплатный доступ
In recent decades, the study of integral operators with Bergman kernels in spaces of smooth functions in complex and functional analysis has not lost its relevance. The article deals with the above-named operators in analytic spaces of the functions extended smoothly to the boundary of the domain, which boundary values belong to the Holder and Besov classes. We have described the behavior of such operators in a circle and a half-plane. It is established that an integral operator with Bergman kernels projects Holder classes in the case of a circle, and Besov classes in the case of a half-plane, onto the corresponding classes of analytic functions, that is, Bergman integral operator leaves the indicated classes invariant.
Integral operator, kernel, bergman kernel, class of functions, besov class, analytic functions, unit disc, half-plane, function space, boundary values
Короткий адрес: https://sciup.org/148308970
IDR: 148308970 | DOI: 10.18101/2304-5728-2020-4-3-13