New mathematical model for the Russian population projections
Автор: Nosova Maria
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Физико-математические науки
Статья в выпуске: 5 т.7, 2021 года.
Бесплатный доступ
In this article, a new original mathematical model for the Russian population projections as an autonomous non-Markov queuing system with an unlimited number of servers and two types of customers is built. The research of this system was carried out a virtual phase method and a modified method of asymptotic analysis and was proofed that the asymptotic distribution of applications served in the system at time t is Gaussian. Such a queuing system sufficiently and adequately simulates the process of changing the age structure of the population and can be used to analyze demographic situations in a single country and around the world. The mathematical model has been applied to the analysis of the population growth in Russia. We have built optimistic scenario for population projections to answer the question of how the Russian population will grow without immigration.
Population projections, queuing system, population model, asymptotic analysis, approximation of distribution, mathematical model
Короткий адрес: https://sciup.org/14120535
IDR: 14120535 | DOI: 10.33619/2414-2948/66/01
Список литературы New mathematical model for the Russian population projections
- Nosova M. A Mathematical Model of Population Growth as a Queuing System // arXiv preprint arXiv:2005.10518. 2020. https://arxiv.org/abs/2005.10518
- Hinde A. Demographic Methods. Arnold: Hodder Arnold Publication, 1998. 320 p.
- Староверов О. В. Модели движения населения. М.: Наука, 1979. 342 с.
- Coale A., Trussell J. The development and use of demographic models // Population studies. 1996. V. 50. №3. P. 469-484. DOI: 10.1080/0032472031000149576
- Newelli C. Methods and models in demography // Belhaven: Colin Newell, 1988. 217 p.
- Keyfitz N. Models / N. Keyfitz // Demography. 1971. V. 8. №4. P. 571-580.
- Назаров А. А., Носова М. Г. Метод передвижки возрастных групп в демографии и его приложения // Вестник Томского государственного университета. Серия Управление, вычислительная техника и информатика. 2009. №3(8). С. 67-75.
- Whelpton P. K. An empirical method of calculating future population // Journal of the American Statistical Association. 1936. 31(195). P. 457-473. DOI: 10.1080/01621459.1936.10503346
- Фалин Г. И. Введение в актуарную математику. М.: МГУ, 1994. 110 с.
- Демографический ежегодник России, 2019. https://clck.ru/Ukq2F