Новые биомаркеры повреждения почек и их использование при малоинвазивном лечении мочекаменной болезни
Автор: Белый Л.Е., Клочков В.В., Клочков А.В.
Журнал: Экспериментальная и клиническая урология @ecuro
Рубрика: Мочекаменная болезнь
Статья в выпуске: 2 т.16, 2023 года.
Бесплатный доступ
Введение. Влияние различных методов малоинвазивного лечения мочекаменной болезни на функцию почки изучено недостаточно. Для оценки характера, тяжести и прогностической значимости повреждения почек при мочекаменной болезни и ее малоинвазивном лечении необходим поиск так называемых «биомаркеров повреждения», поскольку привычно используемые в рутинной клинической практике концентрация мочевины и креатинина сыворотки крови, скорость клубочковой фильтрации изменяются на поздних стадиях заболевания и являются функциональными параметрами. Материалы и методы. Поиск научных публикаций осуществлялся в базах PubMed, Web of Science, Google Scholar по ключевым словам: «acute kidney injury», «KIM-1», «kidney injury molecule 1», «NGAL», «neutrophilgelatinaseassociated lipocalin», «L-FABP», «liver-typefatty acid binding protein», «cystatin C», «retrograde intrarenal surgery», «percutaneous nephrolithotomy», «kidney injury urolithiasis», «kidney injury nephrolithiasis», а также в научной электронной библиотеке eLibrary.ru по ключевым словам «острое повреждение почек», «NGAL», «KIM-1», «цистатин С», «перкутанная нефролитолапаксия», «ретроградная интраренальная хирургия» Результаты. В настоящее время предложены новые биомаркеры, позволяющие выявлять повреждение почек на самых ранних этапах. Это липокалин, ассоциированный с желатиназой нейтрофилов (NGAL), цистатин С, молекула повреждения почек-1 (KIM-1) и белок, связывающий жирные кислоты печеночного типа (L-FABP). Уровень NGAL и KIM-1 увеличивается до повышения уровня креатинина в сыворотке крови и развития соответствующих гистологических изменений в почечной паренхиме. При перкутанной нефролитотомии множественные пункции и послеоперационные кровотечения являются независимыми факторами риска ухудшения функции почек в долгосрочной перспективе, а большие размеры и высокая плотность конкрементов, коралловидный нефролитиаз, большая продолжительность вмешательства в значительной степени связаны с развитием острого повреждения почек в раннем послеоперационном периоде. На повреждение почек в послеоперационном периоде оказывает влияние сопутствующая нефролитиазу обструктивнаяуропатия. Ликвидация обструкции приводит к снижению KIM-1 в моче уже в раннем послеоперационном периоде, несмотря на хирургическую травму. Динамика уровней биомаркеров позволяет высказать предположение, что перкутанная нефролитотомия наносит больший ущерб почкам, чем ретроградная интраренальная хирургия (РИРХ). Заключение. Любые малоинвазивные методы лечения мочекаменной болезни (МКБ) могут привести к повреждению почек, которое далеко не во всех случаях сопровождается нарушением функции. Механизмы повреждения почек при различных вариантах малоинвазивного лечения МКБ имеют специфические особенности, а краткосрочные и отдаленные последствия такого повреждения в настоящее время до конца не определены. Существует необходимость проведения дальнейших исследований, оценивающих влияние различных малоинвазивных способов лечения МКБ на состояние почечных канальцев с использованием современных биомаркеров.
Мочекаменная болезнь, повреждение почек, биомаркеры мочи, kim-1, ngal, перкутанная нефролитотомия, ретроградная интраренальная хирургия
Короткий адрес: https://sciup.org/142239005
IDR: 142239005 | DOI: 10.29188/2222-8543-2023-16-2-67-75
Список литературы Новые биомаркеры повреждения почек и их использование при малоинвазивном лечении мочекаменной болезни
- Mykoniatis I, Sarafidis P, Memmos D, Anastasiadis A, Dimitriadis G, Hatzichristou D. Are endourological procedures for nephrolithiasis treatment associated with renal injury? A review of potential mechanisms and novel diagnostic indexes. Clin Kidney J 2020;13(4):531–41. https://doi.org/10.1093/ckj/sfaa020.
- Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. ADQI 10 workgroup. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int 2014;85(3):513–21. https://doi.org/10.1038/ki.2013.374.
- Kim SY, Moon A. Drug-induced nephrotoxicity and its biomarkers. Biomol Ther (Seoul) 2012;20(3):268–72. https://doi.org/10.4062/biomolther.2012.20.3.268.
- Wellwood JM, Ellis BG, Price RG, Hammond K, Thompson AE, Jones NF. Urinary N-acetyl- beta-D-glucosaminidase activities in patients with renal disease. Br Med J 1975;3(5980):408–11. https://doi.org/10.1136/bmj.3.5980.408.
- Endre ZH, Pickering JW. New markers of acute kidney injury: Giant leaps and baby steps. Clin Biochem Rev 2011;32(2):121–4.
- Plummer DT, Ngaha EO, Wright PJ, Leathwood PD, Blake ME. The sensitivity of urinary enzyme measurements for detecting renal injury. Curr Probl Clin Biochem 1979;(9):71–87.
- Vaidya VS, Ozer JS, Dieterle F, Collings FB, Ramirez V, Troth S, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 2010;28(5):478–85. https://doi.org/10.1038/nbt.1623.
- Tsigou E, Psallida V, Demponeras C, Boutzouka E, Baltopoulos G. Role of new biomarkers: functional and structural damage. Crit Care Res Pract 2013;(2013):361078. https://doi.org/10.1155/2013/361078.
- Abu Zeid AM, Mohammed DY, AbdAlazeem AS, Mohammed Seddeeq ASE Elnaany AM. Urinary NGAL incorporation into Renal Angina Index for early detection of acute kidney injury in critically ill children. J Clini Nephrol 2019;(3):93–9. https://doi.org/10.29328/ journal.jcn.1001032.
- Assadi F, Sharbaf FG. Urine KIM-1 as a potential biomarker of acute renal injury after circulatory collapse in children. Pediatr Emerg Care 2019;35(2):104–7. https://doi.org/10.1097/ PEC.0000000000000886.
- McIlroy DR, Wagener G, Lee HT. Biomarkers of acute kidney injury: an evolving domain. Anesthesiology 2010;112(4):998–1004. https://doi.org/10.1097/ALN.0b013e3181cded3f.
- Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury. Clin J Am Soc Nephrol 2017;12(1):149–73. https://doi.org/10.2215/CJN.01300216.
- Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 1998;273(7):4135–42. https://doi.org/10.1074/jbc.273.7.4135.
- Hubank M, Schatz DG Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucl Acids Res 1994;22(25):5640–48. https://doi.org/10.1093/ nar/22.25.5640.
- Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant 2009;24(11):3265–68. https://doi.org/10.1093/ndt/gfp010.
- van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJ, van Goor H, Stegeman CA. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 2007;212(2):209–17. https://doi.org/10.1002/path.2175.
- Tian L, Shao X, Xie Y, Wang Q, Che X, Zhang M, et al. Kidney Injury Molecule-1 is elevated in nephropathy and mediates macrophage activation via the mapk signalling pathway. Cell Physiol Biochem 2017;41(2):769–83. https://doi.org/10.1159/000458737.
- Кармакова Т.А., Сергеева Н.С., Канукоев К.Ю., Алексеев Б.Я., Каприн А.Д. Молекула повреждения почек 1 (KIM-1): многофункциональный гликопротеин и биологический маркер (обзор). Современные технологии в медицине 2021;13(3):64–80. [Karmakova Т.А., Sergeeva N.S., Kanukoev К.Yu., Alekseev B.Ya., Kaprin А.D. Kidney Injury Molecule 1 (KIM-1): a multifunctional glycoprotein and biological marker (review). Sovremennye tehnologii v medicine = Modern Technologies in Medicine 2021;13(3):64–80. (In Russian)]. https://doi.org/10.17691/stm2021.13.3.08.
- Arthur JM, Hill EG, Alge JL, Lewis EC, Neely BA, Janech MG, et al. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int 2014;85(2):431–8. https://doi.org/10.1038/ki.2013.333.
- Dieterle F, Sistare F, Goodsaid F, Papaluca M, Ozer JS, Webb CP, et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol 2010;28(5):455–62. https://doi.org/10.1038/nbt.1625.
- Ornellas FM, Ornellas DS, Martini SV, Castiglione RC, Ventura GM, Rocco PR, et al. Bone marrow-derived mononuclear cell therapy accelerates renal ischemia-reperfusion injury recovery by modulating inflammatory, antioxidant and apoptotic related molecules. Cell Physiol Biochem 2017;41(5):1736–52. https://doi.org/10.1159/000471866.
- van Timmeren MM, Vaidya VS, van Ree RM, Oterdoom LH, de Vries AP, Gans RO, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation 2007;84(12):1625–30. https://doi.org/10.1097/01.tp.0000295982.78039.ef.
- Szeto CC, Kwan BC, Lai KB, Lai FM, Chow KM, Wang G, et al. Urinary expression of kidney injury markers in renal transplant recipients. Clin J Am Soc Nephrol 2010;5(12):2329–37. https://doi.org/10.2215/CJN.01910310.
- Zhang PL, Mashni JW, Sabbisetti VS, Schworer CM, Wilson GD, Wolforth SC, et al. Urine kidney injury molecule-1: a potential non-invasive biomarker for patients with renal cell carcinoma. Int Urol Nephrol 2014;46(2):379–88. https://doi.org/10.1007/s11255-013-0522-z.
- Singer E, Markó L, Paragas N, Barasch J, Dragun D, Müller DN, et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol (Oxf) 2013;207(4):663–72. https://doi.org/10.1111/apha.12054.
- Buonafine M, Martinez-Martinez E, Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond) 2018;132(9):909–23. https://doi.org/10.1042/CS20171592.
- Bonventre JV, Vaidya VS, Schmouder R, Feig P, Dieterle F. Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 2010;28(5):436–40. https://doi.org/10.1038/ nbt0510-436.
- Helanova K, Spinar J, Parenica J. Diagnostic and prognostic utility of neutrophil gelatinase-associated lipocalin (NGAL) in patients with cardiovascular diseases-review. Kidney Blood Press Res 2014;39(6):623–9. https://doi.org/10.1159/000368474.
- Sancho-Martínez SM, Blanco-Gozalo V, Quiros Y, Prieto-García L, Montero-Gómez MJ, Docherty NG, et al. Impaired tubular reabsorption is the main mechanism explaining increases in urinary NGAL excretion following acute kidney injury in rats. Toxicol Sci 2020;175(1):75–86. https://doi.org/10.1093/toxsci/kfaa029.
- Мирошкина И.В., Грицкевич А.А., Байтман Т.П., Пьяникин С.С., Аревин А.Г., Калинин Д.В., и др. Роль маркеров острого повреждения почки в оценке функции почки при ее ишемии. Экспериментальная и клиническая урология 2018;(4):114–21. [Miroshkina I.V., Grickevich A.A., Baytman T.P., P'yanikin S.S., Arevin A.G., Kalinin D.V., et al. The role of markers of acute kidney damage in assessing kidney function with its ischemia. Eksperimentalnaya i klinicheskaya urologiya=Experimental and Clinical Urology 2018;(4):114–121. (In Russian)].
- Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med 2010;4(2):265–80. https://doi.org/10.2217/bmm.10.12.
- Zhang Y, Fan Y, Mei Z. NGAL and NGALR overexpression in human hepatocellular carcinoma toward a molecular prognostic classification. Cancer Epidemiol 2012;36(5):e294–299. https://doi.org/10.1016/j.canep.2012.05.012.
- Bagshaw SM, Bennett M, Haase M, Haase-Fielitz A, Egi M, Morimatsu H, et al. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med 2010;36(3):452–61. https://doi.org/10.1007/ s00134-009-1724-9.
- Yilmaz A, Sevketoglu E, Gedikbasi A, Karyagar S, Kiyak A, Mulazimoglu M, et al. Early prediction of urinary tract infection with urinary neutrophil gelatinase associated lipocalin. Pediatr Nephrol 2009;24(12):2387–92. https://doi.org/10.1007/s00467-009-1279-6.
- Chmurzyńska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 2006;47(1):39–48. https://doi.org/10.1007/ BF03194597.
- Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 2011;5(3):170–91. https://doi.org/10.1186/1479-7364-5-3-170.
- Kamijo-Ikemori A, Sugaya T, Kimura K. L-type fatty acid binding protein (L-FABP) and kidney disease. Rinsho Byori 2014;62(2):163–70.
- Wen Y, Parikh CR. Current concepts and advances in biomarkers of acute kidney injury. Crit Rev Clin Lab Sci 2021;58(5):354–68. https://doi.org/10.1080/10408363.2021.1879000.
- Lipiec K, Adamczyk P, Świętochowska E, Ziora K, Szczepańska M. L-FABP and IL-6 as markers of chronic kidney damage in children after hemolytic uremic syndrome. Adv Clin Exp Med 2018;27(7):955–62. https://doi.org/10.17219/acem/70567.
- Kamijo-Ikemori A, Sugaya T, Ichikawa D, Hoshino S, Matsui K, Yokoyama T, et al. Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta 2013;(424):104–8. https://doi.org/10.1016/j.cca.2013.05.020.
- Abrahamson M, Olafsson I, Palsdottir A, Ulvsbäck M, Lundwall A, Jensson O, et al. Structure and expression of the human cystatin C gene. Biochem J 1990;268(2):287–94. https://doi.org/10.1042/bj2680287.
- Chew JS, Saleem M, Florkowski CM, George PM. Cystatin C – a paradigm of evidence based laboratory medicine. Clin Biochem Rev 2008;29(2):47–62.
- Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002;40(2):221–6. https://doi.org/10.1053/ajkd.2002.34487.
- Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 2009;75(6):652–60. https://doi.org/10.1038/ki.2008.638.
- Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 2004;65(4):1416–21. https://doi.org/10.1111/j.1523-1755.2004.00517.x.
- Risch L, Herklotz R, Blumberg A, Huber AR. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem 2001;47(11):2055–9.
- Xu Y, Ding Y, Li X, Wu X. Cystatin C is a disease-associated protein subject to multiple regulation. Immunol Cell Biol 2015;93(5):4424–51. https://doi.org/10.1038/icb.2014.121.
- Кит О.И., Франциянц Е.М., Димитриади С.Н., Каплиева И.В., Трепитаки Л.К. Экспрессия молекулярных маркеров острого повреждения почек в динамике экспериментальной ишемии. Экспериментальная и клиническая урология 2014;(4):12–5. [Kit O.I., Franciyanc E.M., Dimitriadi S.N., Kaplieva I.V., Trepitaki L.K. Expression of molecular markers of the acute kidney injury in the dynamics of experimental ischemia. Eksperimentalnaya i klinicheskaya urologiya=Experimental and Clinical Urology 2014;(4):12–5. (In Russian)].
- Shukla AN, Juneja M, Patel H, Shah KH, Konat A, Thakkar BM, et al. Diagnostic accuracy of serum cystatin C for early recognition of contrast induced nephropathy in Western Indians undergoing cardiac catheterization. Indian Heart J 2017;69(3):311–5. https://doi.org/10.1016/ j.ihj.2016.12.010.
- Kostic D, Beozzo GPNS, do Couto SB, Kato AHT, Lima L, Palmeira P, et al. The role of renal biomarkers to predict the need of surgery in congenital urinary tract obstruction in infants. J Pediatr Urol 2019;15(3):242.e1–242.e9. https://doi.org/10.1016/j.jpurol.2019.03.009.
- Mao W, Liu S, Wang K, Wang M, Shi H, Liu Q, et al. Cystatin C in evaluating renal function in ureteral calculi hydronephrosis in adults. Kidney Blood Press Res 2020;45(1):109–21. https://doi.org/10.1159/000504441.
- Кирпатовский В.И, Орлова Е.В., Харламова Л.А., Голованов С.А., Дрожжева В.В., Фролова Е.В. Значимость динамического определения концентрации Цистатина С в крови как маркера риска перехода острого повреждения почек в хроническую почечную недостаточность и эффективности нефропротективной терапии. Экспериментальная и клиническая урология 2021;14(4):20–9. [Kirpatovskiy V.I., Orlova E.V., Kharlamova L.A., Golovanov S.A., Drozhzheva V.V., Frolova E.V. The significance of dynamic detection of Cystatin C concentration in the blood as a marker of the risk of transition of acute kidney injury to chronic renal failure and the effectiveness of nephroprotective therapy. Eksperimentalnaya i klinicheskaya urologiya = Experimental and Clinical Urology 2021;14(4):20–9. (In Russian)]. https://doi.org/10.29188/2222-8543-2021-14-4-20-29.
- Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 2015;10(1):147–55. https://doi.org/10.2215/ CJN.12191213.
- Pillai S, Kriplani A, Chawla A, Somani B, Pandey A, Prabhu R, et al. Acute kidney injury post-percutaneous nephrolithotomy (PNL): prospective outcomes from a university teaching hospital. J Clin Med 2021;10(7):1373. https://doi.org/10.3390/jcm10071373.
- Handa RK, Matlaga BR, Connors BA, Ying J, Paterson RF, Kuo RL, et al. Acute effects of percutaneous tract dilation on renal function and structure. J Endourol 2006;20(12):1030–40. https://doi.org/10.1089/end.2006.20.1030.
- El-Tabey NA, El-Nahas AR, Eraky I, Shoma AM, El-Assmy AM, Soliman SA, et al. Long-term functional outcome of percutaneous nephrolithotomy in solitary kidney. Urology 2014;83(5):1011–5. https://doi.org/10.1016/j.urology.2013.12.025.
- Fulla J, Prasanchaimontri P, Wright HC, Elia M, De S, Monga M, et al. Acute kidney injury and percutaneous nephrolithotomy: incidence and predictive factors. World J Urol 2022;40(2):563–7. https://doi.org/10.1007/s00345-021-03874-4.
- Daggülli M, Utangaç MM, Dede O, Bodakci MN, Hatipoglu NK, Penbegül N, et al. Potential biomarkers for the early detection of acute kidney injury after percutaneous nephrolithotripsy. Ren Fail 2016;38(1):151–6. https://doi.org/10.3109/0886022X.2015.1073494.
- MohamadiSichani M, Tolou Ghamari Z Investigation of urinary neutrophil gelatinase associated lipocalin (NGAL) for early diagnosis of acute kidney injury after percutaneous nephrolithotomy. African J Urol 2017;23(4):214–8.
- Altun A, Bozkurt A, Erdogan A, Mertoğlu C, Hirik E, Keskin E, Turan A. Comparison of serum Kim-1 and Miox levels in patients that underwent percutaneous nephrolithotomy and flexible ureterorenoscopy. Urologia 2022:915603221118458. https://doi.org/10.1177/03915603221118458.
- Balasar M, Pişkin MM, Topcu C, Demir LS, Gürbilek M, Kandemir A, et al. Urinary kidney injury molecule-1 levels in renal stone patients. World J Urol 2016;34(9):1311–6. https://doi.org/10.1007/s00345-016-1765-y.
- Olvera-Posada D, Dayarathna T, Dion M, Alenezi H, Sener A, Denstedt JD, et al. KIM-1 is a potential urinary biomarker of obstruction: results from a prospective cohort study. J Endourol 2017;31(2):111–8. https://doi.org/10.1089/end.2016.0215.
- Ghadian A, Einollahi B, Ebrahimi M, Javanbakht M, Asadi M, Kazemi R. Renal function markers in single-kidney patients after percutaneous nephrolithotomy: A pilot study. J Res Med Sci 2022;27:17. https://doi.org/10.4103/jrms.jrms_880_21.
- Caddeo G, Williams ST, McIntyre CW, Selby NM. Acute kidney injury in urology patients: incidence, causes and outcomes. Nephrourol Mon 2013;5(5):955–61. https://doi.org/10.5812/ numonthly.12721.
- Jung H, Osther PJ. Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus 2015;(4):373. https://doi.org/10.1186/s40064-015-1114-4.
- Osther PJ, Pedersen KV, Lildal SK, Pless MS, Andreassen KH, Osther SS, et al. Pathophysiological aspects of ureterorenoscopic management of upper urinary tract calculi. Curr Opin Urol 2016;26(1):63–9. https://doi.org/10.1097/MOU.0000000000000235.
- Hoarau N, Martin F, Lebdai S, Chautard D, Culty T, Azzouzi AR, et al. Impact of retrograde flexible ureteroscopy and intracorporeal lithotripsy on kidney functional outcomes. Int Braz J Urol 2015;41(5):920–6. https://doi.org/10.1590/S1677-5538.IBJU.2014.0402
- Павлов В.Н., Пушкарев А.М., Ракипов И.Г., Алексеев А.В., Насибуллин И.М. NGAL – ранний биомаркер острого повреждения почек после контактной уретеролитотрипсии. Медицинский вестник Башкортостана 2013;8(6):24–7. [Pavlov V.N., Pushkarev A.M., Rakipov I.G., Alekseev A.V., Nasibullin I.M. NGAL is an early biomarker of acute kidney injury after contact ureterolithotripsy. Meditsinskiy vestnik Bashkortostana = Bashkortostan medical journal 2013;8(6):24–7. (In Russian)].
- Dede O, Dağguli M, Utanğaç M, Yuksel H, Bodakcı MN, Hatipoğlu NK, et al. Urinary expression of acute kidney injury biomarkers in patients after RIRS: it is a prospective, controlled study. Int J Clin Exp Med 2015;8(5):8147–52.
- Hughes SF, Moyes AJ, Lamb RM, Ella-Tongwiis P, Bell C, Moussa A, et al. The role of specific biomarkers, as predictors of post-operative complications following flexible ureterorenoscopy (FURS), for the treatment of kidney stones: a single-centre observational clinical pilot-study in 37 patients. BMC Urol 2020;(20):122. https://doi.org/10.1186/s12894-020-00693-4.
- Stächele L, Stekhoven DJ, Birzele JA, Risch M, Strebel RT. Impact of retrograde intrarenal surgery on biomarkers that are associated with renal parenchyma injury, a preliminary study. World J Urol 2022;40(3):841–7. https://doi.org/10.1007/s00345-021-03909-w.
- Mertoglu C, Bozkurt A, Keskin E, Gunay M. Evaluation of the effect of retrograde intrarenal surgery with myo-inositol oxygenase. Pak J Med Sci 2018;34(1):170–4. https://doi.org/10.12669/pjms.341.14094.