Новый метод функционализации магнитных наночастиц, инкапсулированных углеродом

Автор: Храмцов П.В., Бочкова М.С., Тимганова В.П., Кропанева М.Д., Заморина С.А., Раев М.Б.

Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio

Рубрика: Биотехнология

Статья в выпуске: 4, 2017 года.

Бесплатный доступ

Описан метод биологической функционализации магнитных железоуглеродных наночастиц. Суть метода заключается в ковалентной пришивке белков или других веществ, содержащих аминогруппы, к молекулам бычьего сывороточного альбумина, нековалентно сорбированного на углеродной поверхности наночастиц. В настоящей работе в качестве модельного белка был использован стрептавидин. Предлагаемый метод прост в реализации, все реакции проводятся в «мягких» физико-химических условиях. Синтезированные конъюгаты магнитных наноча-стиц с биомолекулами могут быть использованы в различных областях биомедицины.

Магнитные наночастицы, углеродная капсула, функционализация

Короткий адрес: https://sciup.org/147204858

IDR: 147204858

Список литературы Новый метод функционализации магнитных наночастиц, инкапсулированных углеродом

  • Fuhrer R. et al. Immobilized P-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: Reversible organic contaminant adsorption and enrichment from water//Langmuir. 2011. Vol. 27 (5). P. 1924-1929
  • Galakhov V.R. et al. Characterization of carbon-encapsulated nickel and iron nanoparticles by means of X-ray absorption and photoelectron spectroscopy//Journal of Physical Chemistry C. 2010. Vol. 114 (51). P. 22413-22416
  • Goding J. W. Antibody production by hybridomas//Journal of Immunological Methods. 1980. Vol. 39 (4). P. 285-308
  • Herrmann I.K. et al. High-strength metal nanomag-nets for diagnostics and medicine: Carbon shells allow long-term stability and reliable linker chemistry//Nanomedicine. 2009. Vol. 4 (7). P. 787798
  • Herrmann I.K. et al. In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short-and long-term exposure scenarios//Nanomedicine. 2016. Vol. 11 (7). P. 783-796
  • Kang T. et al. Surface design of magnetic nanoparti-cles for stimuli-responsive cancer imaging and therapy//Biomaterials. 2017. Vol. 136. P. 98114
  • Karmakar A. et al. Radio-frequency induced in vitro thermal ablation of cancer cells by EGF function-alized carbon-coated magnetic nanoparticles//Journal of Materials Chemistry. 2011. Vol. 21 (34). P. 12761-12769
  • Kasprzak A. et al. Grinding-induced functionalization of carbon-encapsulated iron nanoparticles//Green Chemistry. 2017. Vol. 19 (15). P. 3510-3514
  • Kowalczyk A. et al. Conformational control of human transferrin covalently anchored to carbon-coated iron nanoparticles in presence of a magnetic field//Acta Biomaterialia. 2016. Vol. 45 P. 367-374
  • Lee H.-J. et al. Photothermal cancer therapy using graphitic carbon-coated magnetic particles prepared by one-pot synthesis//International Journal of Nanomedicine. 2015. Vol. 10. P. 271-282
  • Li X. et al. One-pot synthesis and functionalisation of Fe2O3@C-NH2 nanoparticles for imaging and therapy//IET Nanobiotechnology. 2014. Vol. 8 (2). P. 93-101
  • Li Y. et al. Functionalization of multilayer Carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization//Carbon. 2016. Vol. 100. P. 165-177
  • Mattila P. et al. Scalable synthesis and functionaliza-tion of cobalt nanoparticles for versatile magnetic separation and metal adsorption//Journal of Nanoparticle Research. 2014. Vol. 16 (9). art. no. 2606
  • Matysiak-Brynda E. et al. Novel ultrasensitive im-munosensor based on magnetic particles for direct detection of transferrin in blood//Sensors and Actuators, B: Chemical. 2017. Vol. 249. P. 105113
  • Sadhasivam S. et al. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells//International Journal of Pharmaceutics. 2015. Vol. 480 (1-2). P. 814
  • Schreiber H.A. et al. Using carbon magnetic nanopar-ticles to target, track, and manipulate dendritic cells//Journal of Immunological Methods. 2010. Vol. 356 (1-2). P. 47-59
  • Shah M.A.A. et al. Nanoparticles for DNA vaccine delivery//Journal of Biomedical Nanotechnology. 2014. Vol. 10 (9). P. 2332-2349
  • Shen Z. et al. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging//Molecular Pharmaceutics. 2017. Vol. 14 (5) P. 13521364
  • Taylor A. et al. Functionalization of carbon encapsulated iron nanoparticles//Journal of Nanoparticle Research. 2010. Vol. 12 (2). P. 513-519
  • Yu J. et al. Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy//Advanced Materials. 2014. Vol. 26 (24). P. 4114-4120
  • Yu J. et al. Multistimuli-regulated photochemother-mal cancer therapy remotely controlled via Fe5C2 nanoparticles//ACS Nano. 2016. Vol. 10 (1). P. 159-169
  • Zlateski V. et al. Efficient magnetic recycling of cova-lently attached enzymes on carbon-coated metallic nanomagnets//Bioconjugate Chemistry. 2014. Vol. 25 (4). P. 677-684
  • Assa F. et al. Chitosan magnetic nanoparticles for drug delivery systems//Critical Reviews in Biotechnology. 2017. Vol. 7 (4). P. 492-509
Еще
Статья научная