Numerical modelling of the dynamics of the galactic halos in the colliding galaxies

Бесплатный доступ

Based on parallel three-dimensional simulation of N-body and gas self-consistent dynamics, we study the behavior of hot coronal gas in the colliding galaxies with "live'' dark matter halos. We model a few scenarios of the galactic collisions including "bull-eye'' and non-central ones, and use different values of the initial velocities of the colliding galaxies. Taking into account the self-gravity, we demonstrate that the collision of gaseous and stellar components does not lead to the formation of a gaseous "protogalaxy'' observed in some numerical simulations. Also, we show that about sixty percent of hot halo gas is expelled into intergalactic space during the collision. Numerical simulations show that a considerable amount of gas (up to 70% for a bull-eye collisions) exchanges between two colliding galaxies.

Еще

Multi-gpu, openmp-cuda, gpu-direct, nvidia tesla, n-body, sph, colliding galaxies, задача n-тел

Короткий адрес: https://sciup.org/147232935

IDR: 147232935   |   DOI: 10.14529/mmp190210

Список литературы Numerical modelling of the dynamics of the galactic halos in the colliding galaxies

  • Norman C., Silk J. Interstellar Bullets - H2O Masers and Herbig-Haro Objects. Astrophysical Journal, 1979, vol. 228, pp. 197-205. DOI: 10.1086/156836
  • Mathews W.G., Brighenti F. Hot Gas in and Around Elliptical Galaxies. Annual Review of Astronomy and Astrophysic, 2003, vol. 41, pp. 191-239. DOI: 10.1146/annurev.astro.41.090401.094542
  • O'Sullivan E., Forbes D.A., Ponman T.J. A Catalogue and Analysis of X-Ray Luminosities of Early-Type Galaxies. Monthly Notices of the Royal Astronomical Society, 2001, vol. 328, pp. 461-484. DOI: 10.1046/j.1365-8711.2001.04890.x
  • Fukugita M., Hogan C.J., Peebles P.J.E. The Cosmic Baryon Budget. The Astrophysical Journal, 1998, vol. 503, pp. 518-530. DOI: 10.1086/306025
  • Fukugita M., Peebles P.J.E. The Cosmic Energy Inventory. The Astrophysical Journal, 2004, vol. 616, pp. 643-668. DOI: 10.1086/425155
  • Sinha M., Holley-Bockelmann K. Numerical Simulations of Hot Halo Gas in Galaxy Mergers. Galaxy Evolution: Emerging Insights and Future Challenges ASP Conference Series, 2009, vol. 419, pp. 263-266.
  • DOI: 10.1063/1.3458479
  • Tutukov A.V., Lazareva G.G., Kulikov I.M. Gas Dynamics of a Central Collision of Two Galaxies: Merger, Disruption, Passage and the Formation of a New Galaxy. Astronomy Reports, 2011, vol. 55, pp. 770-783.
  • DOI: 10.1134/S1063772911090083
  • Vshivkov V.A., Lazareva G.G., Snytnikov A.V., Kulikov I.M., Tutukov A.V. Hydrodynamical Code for Numerical Simulation of the Gas Components of Colliding Galaxies. The Astrophysical Journal Supplement, 2011, vol. 194, p. 47.
  • DOI: 10.1088/0067-0049/194/2/47
  • Hwang J.-S., Park C. Effects of Hot Halo Gas on Star Formation and Mass Transfer During Distant Galaxy-Galaxy Encounters. The Astrophysical Journal, 2015, vol. 805, p. 131.
  • DOI: 10.1088/0004-637X/805/2/131
  • Sawada K., Matsuda T., Hachisu I. Spiral Shocks on a Roche Lobe Overflow in a Semi-Detached Binary System. Monthly Notices of the Royal Astronomical Society, 1986, vol. 219, pp. 75-88.
  • DOI: 10.1093/mnras/219.1.75
  • Bisikalo D.V., Boyarchuk A.A., Kuznetsov O. A., Chechetkin V.M. The Effect of Viscosity on the Flow Morphology in Semidetached Binary Systems. Results of 3D Simulations. II. Astronomy Reports, 2000, vol. 44, pp. 26-35.
  • DOI: 10.1134/1.163824
  • Khoperskov S.A., Khoperskov A.V., Eremin M.A., Butenko M.A. Polygonal Structures in a Gaseous Disk: Numerical Simulations. Astronomy Letters, 2011, vol. 37, pp. 563-575.
  • DOI: 10.1134/S032001081108002X
  • Dobbs C.L., Bonnell I.A., Clark P.C. Centrally Condensed Turbulent Cores: Massive Stars or Fragmentation? Monthly Notices of the Royal Astronomical Society, 2005, vol. 360, pp. 2-8.
  • DOI: 10.1111/j.1365-2966.2005.08941.x
  • Vasiliev E.O. Thermal Instability in a Collisionally Cooled Gas. Monthly Notices of the Royal Astronomical Society, 2012, vol. 419, pp. 3641-3648.
  • DOI: 10.1111/j.1365-2966.2011.20017.x
  • Khoperskov S.A., Vasiliev E.O., Sobolev A.M., Khoperskov A.V. The Simulation of Molecular Clouds Formation in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2013, vol. 428, pp. 2311-2320.
  • DOI: 10.1093/mnras/sts195
  • Vorobyov E.I., Recchi S., Hensler G. Stellar Hydrodynamical Modelling of Dwarf Galaxies: Simulation Methodology, Tests and First Results. Astronomy and Astrophysics, 2015, vol. 579, pp. 1-23.
  • DOI: 10.1051/0004-6361/201425587
  • Vasiliev E.O., Shchekinov Yu.A. Supernova Remnants in the H and H Lines. Astrophysics, 2017, vol. 60, pp. 1-18.
  • DOI: 10.1007/s10511-017-9458-9
  • Dobbs C.L., Pringle J.E. The Exciting Lives of Giant Molecular Clouds. Monthly Notices of the Royal Astronomical Society, 2013, vol. 432, pp. 653-667.
  • DOI: 10.1093/mnras/stt508
  • Khoperskov S.A., Vasiliev E.O., Ladeyschikov D.A., Sobolev A.M., Khoperskov A.V. Giant Molecular Cloud Scaling Relations: the Role of the Cloud Definition. Monthly Notices of the Royal Astronomical Society, 2016, vol. 455, pp. 1782-1795.
  • DOI: 10.1093/mnras/stv2366
  • Duarte-Cabral A., Dobbs C.L. What Can Simulated Molecular Clouds Tell Us About Real Molecular Clouds? Monthly Notices of the Royal Astronomical Society, 2016, vol. 458, pp. 3667-3683.
  • DOI: 10.1093/mnras/stw469
  • Khoperskov A., Bizyaev D., Tiurina N., Butenko M. Numerical Modelling of the Vertical Structure and Dark Halo Parameters in Disc Galaxies. Astronomische Nachrichten, 2010, vol. 331, pp. 731-745.
  • DOI: 10.1002/asna.200911402
  • Khoperskov S., Vasiliev E., Khoperskov A., Lubimov V. Numerical Code for Multi-Component Galaxies: from N-Body to Chemistry and Magnetic Fields. Journal of Physics, 2014, vol. 510, article ID: 012011, 13 p.
  • DOI: 10.1088/1742-6596/510/1/012011
  • Monaghan J.J. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, vol. 30, pp. 543-574.
  • DOI: 10.1146/annurev.astro.30.1.543
  • Monaghan J.J. Smoothed Particle Hydrodynamics. Reports on Progress in Physics, 2005, vol. 68, pp. 1703-1759.
  • DOI: 10.1088/0034-4885/68/8/R01
  • Mokos A., Rogers B.D., Stansby P.K., Dominguez J.M. Multi-Phase SPH Modelling of Violent Hydrodynamics on GPUs. Computer Physics Communications, 2015, vol. 196, pp. 304-316.
  • DOI: 10.1016/j.cpc.2015.06.020
  • Barnes J.E., Hut P. Error Analysis of a Tree Code. Astrophysical Journal Supplement Series, 1989, vol. 70, pp. 389-417.
  • DOI: 10.1086/191343
  • Lukat G., Banerjee R. A GPU Accelerated Barnes-Hut Tree Code for FLASH4. New Astronomy, 2016, vol. 45, pp. 14-28.
  • DOI: 10.1016/j.newast.2015.10.007
  • Khrapov S.S., Khoperskov A.V. Smoothed-Particle Hydrodynamics Models: Implementation Features on GPUs. Communications in Computer and Information Science, 2017, vol. 793, pp. 266-277.
  • DOI: 10.1007/978-3-319-71255-0_21
  • Khrapov S.S., Khoperskov S.A., Khoperskov A.V. New Features of Parallel Implementation of N-Body Problems on GPU. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, pp. 124-136.
  • DOI: 10.14529/mmp180111
  • Huang S.-Y., Spurzem R., Berczik P. Performance Analysis of Parallel Gravitational N-Body Codes on Large GPU Clusters. Research in Astronomy and Astrophysics, 2016, vol. 16, no. 1, article ID: 11, 11 p.
  • DOI: 10.1088/1674-4527/16/1/011
  • Steinberg O.B. Circular Shift of Loop Body-Programme Transformation, Promoting Parallelism. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2017, vol. 10, no. 3, pp. 120-132.
  • DOI: 10.14529/mmp170310
  • Goulding A.D., Greene J.E., Chung-Pei Ma. The MASSIVE Survey. IV. The X-Ray Halos of the Most Massive Early-Type Galaxies in the Nearby Universe. The Astrophysical Journal, 2016, vol. 826, p. 167.
  • DOI: 10.3847/0004-637X/826/2/167
Еще
Статья научная