О подходе к анализу асимптотических свойств монотонных субоднородных отображений с позиций обобщенных фейеровских отображений
Автор: Смирнов А.И.
Журнал: Вестник экономики, управления и права @vestnik-urep
Рубрика: Математика
Статья в выпуске: 1 (42), 2018 года.
Бесплатный доступ
Рассматриваются итерационные процессы на неотрицательном конусе конечномерного евклидова пространства с монотонным субоднородным отображением в качестве оператора шага. Вводится обобщение понятия классического фейеровского отображения доказывается соответствующий аналог теоремы о сходимости. Показано, что класс монотонных субоднородных примитивных на некотором множестве отображений содержится в классе обобщенных фейеровских отображений. В качестве следствия получена известная теорема о сходимости итераций монотонных субоднородных отображений.
Примитивное отображение
Короткий адрес: https://sciup.org/142226802
IDR: 142226802
Список литературы О подходе к анализу асимптотических свойств монотонных субоднородных отображений с позиций обобщенных фейеровских отображений
- Моришима М. Равновесие, устойчивость, рост. М.: Наука, 1972.
- Никайдо Х. Выпуклые структуры и математическая экономика. М.: Мир, 1972.
- Еремин И.И. Системы линейных неравенств и линейная оптимизация. Екатеринбург: УрО РАН, 2007.
- Васин В.В., Еремин И.И. Операторы и итерационные процессы фейеровского типа (Теория и приложения). Москва - Ижевск: Регулярная и хаотическая динамика, 2005. 200 с.
- Еремин И.И., Попов Л.Д. Фейеровские процессы в теории и практике // Известия вузов. Математика. 2009. №1. С. 44-65.