On approximation of the functions of two variables by some fourier integrals

Бесплатный доступ

This paper we studies some issues on the deviation of the functions of two variables 𝑓(𝑥, 𝑦) defined on the whole two-dimensional space from integral mean values of their Fourier transforms in the metric of the space 𝐿𝑝(𝑅2) (1 ≤ 0 we consider 𝑆, (𝑓; 𝑥, 𝑦) = ∫︁ - ∫︁ - 𝐹(𝑡, 𝑧) exp(𝑖(𝑡𝑥 + 𝑧𝑦))𝑑𝑡𝑑𝑧 = = ∫︁ 0 ⎩ ∫︁𝑢 -𝑢 𝐴(𝑡, 𝑢)𝑑𝑡 + ∫︁𝑢 -𝑢 𝐴(𝑡,-𝑢)𝑑𝑡 + ∫︁𝑢 -𝑢 𝐴(𝑢, 𝑧)𝑑𝑧 + ∫︁𝑢 -𝑢 𝐴(-𝑢, 𝑧)𝑑𝑧 ⎭𝑑𝑢 = = ∫︁ 0 𝑆* 𝑢,𝑢(𝑓; 𝑥, 𝑦)𝑑𝑢, where 𝐴(𝑡, 𝑧) = 𝐹(𝑡, 𝑧) exp(𝑖(𝑡𝑥 + 𝑧𝑦)). This paper estimates the value 𝑅,𝑟(𝑓)𝐿𝑝 = ‖𝑓(𝑥, 𝑦) - 𝑈,𝑟(𝑓; 𝑥, 𝑦)‖𝐿𝑝, where 𝑈,𝑟(𝑓; 𝑥, 𝑦) = ∫︁ 0 (︂ 1 - 𝑟 )︂ 𝑆* 𝑢,𝑢(𝑓; 𝑥, 𝑦)𝑑𝑢. Theorem 1. If 𝑓(𝑥, 𝑦) ∈ 𝐿𝑝(𝑅2) (1 function show_eabstract() { $('#eabstract1').hide(); $('#eabstract2').show(); $('#eabstract_expand').hide(); }

Еще

Function of two variables, fourier series, fourier transformation, partial sums of fourier series, integral mean values, entire function of finite order, best approximation, modulus of continuity

Короткий адрес: https://sciup.org/149129851

IDR: 149129851   |   DOI: 10.15688/mpcm.jvolsu.2019.1.3

Статья научная