On approximation of the functions of two variables by some fourier integrals
Автор: Khasanov Yusufali Khasanovich
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Математика и механика
Статья в выпуске: 1 т.22, 2019 года.
Бесплатный доступ
This paper we studies some issues on the deviation of the functions of two variables 𝑓(𝑥, 𝑦) defined on the whole two-dimensional space from integral mean values of their Fourier transforms in the metric of the space 𝐿𝑝(𝑅2) (1 ≤ 0 we consider 𝑆, (𝑓; 𝑥, 𝑦) = ∫︁ - ∫︁ - 𝐹(𝑡, 𝑧) exp(𝑖(𝑡𝑥 + 𝑧𝑦))𝑑𝑡𝑑𝑧 = = ∫︁ 0 ⎩ ∫︁𝑢 -𝑢 𝐴(𝑡, 𝑢)𝑑𝑡 + ∫︁𝑢 -𝑢 𝐴(𝑡,-𝑢)𝑑𝑡 + ∫︁𝑢 -𝑢 𝐴(𝑢, 𝑧)𝑑𝑧 + ∫︁𝑢 -𝑢 𝐴(-𝑢, 𝑧)𝑑𝑧 ⎭𝑑𝑢 = = ∫︁ 0 𝑆* 𝑢,𝑢(𝑓; 𝑥, 𝑦)𝑑𝑢, where 𝐴(𝑡, 𝑧) = 𝐹(𝑡, 𝑧) exp(𝑖(𝑡𝑥 + 𝑧𝑦)). This paper estimates the value 𝑅,𝑟(𝑓)𝐿𝑝 = ‖𝑓(𝑥, 𝑦) - 𝑈,𝑟(𝑓; 𝑥, 𝑦)‖𝐿𝑝, where 𝑈,𝑟(𝑓; 𝑥, 𝑦) = ∫︁ 0 (︂ 1 - 𝑟 )︂ 𝑆* 𝑢,𝑢(𝑓; 𝑥, 𝑦)𝑑𝑢. Theorem 1. If 𝑓(𝑥, 𝑦) ∈ 𝐿𝑝(𝑅2) (1 function show_eabstract() { $('#eabstract1').hide(); $('#eabstract2').show(); $('#eabstract_expand').hide(); }
Function of two variables, fourier series, fourier transformation, partial sums of fourier series, integral mean values, entire function of finite order, best approximation, modulus of continuity
Короткий адрес: https://sciup.org/149129851
IDR: 149129851 | DOI: 10.15688/mpcm.jvolsu.2019.1.3