On the trapped waves in acoustic waveguide with infinitely thin obstacle
Автор: Yumov Igor Bimbaevich
Журнал: Вестник Бурятского государственного университета. Математика, информатика @vestnik-bsu-maths
Рубрика: Функциональный анализ и дифференциальные уравнения
Статья в выпуске: 1, 2013 года.
Бесплатный доступ
The paper shows the existence of the eigenwave captured by an infinitely thin obstacle in three-dimensional acoustic waveguide with rectangular cross-section corresponding to the eigenvalue which is embedded in the continuous spectrum. The cases of symmetric cruciform obstacle and a flat plate in the plane of symmetry are considered.
Acoustic waveguide, trapped modes, infinitely thin obstacle, discrete and continuous spectra, variational method
Короткий адрес: https://sciup.org/14835083
IDR: 14835083