On the asymptotic behavior of solutions of the stationary Schrodinger equation on non-compact Riemannian manifolds

Автор: Zubankova K.A., Mazepa E.A., Poluboyarova N.M.

Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu

Рубрика: Математика и механика

Статья в выпуске: 4 т.26, 2023 года.

Бесплатный доступ

We study the problem of asymptotic behavior and belonging to given functional class of solutions of the Schro¨dinger equation on a noncompactRiemannian manifold without boundary. In the present work we suggest concept of equivalence in the classes of continuous functions on a non-compact Riemannian manifold with respect to certain norms in this spaces. Also we establish the interrelation between problems of existence of solutions of the Schro¨dinger equation on and off some compact in a given class of equivalent functions. We study questions of existence and belonging to given functional class of solutions of the Schro¨dinger equation𝐿𝑢 ≡ Δ𝑢 - 𝑐(𝑥)𝑢 = 0, (1)⊂∈ ≥where 𝑐(𝑥) 𝐶0,α(Ω), 𝑐(𝑥) 0, 0

Еще

Schro¨dinger equation, noncompact riemannian manifold, asymptotic behavior, classes of equivalent functions, boundary value problems

Короткий адрес: https://sciup.org/149145138

IDR: 149145138   |   DOI: 10.15688/mpcm.jvolsu.2023.4.2

Статья научная