Оценка риска никельсодержащих наноматериалов: характеристика опасности in vivo

Автор: Гмошинский И.В., Хотимченко С.А.

Журнал: Анализ риска здоровью @journal-fcrisk

Рубрика: Аналитические обзоры

Статья в выпуске: 3 (35), 2021 года.

Бесплатный доступ

Наночастицы (НЧ) никеля (Ni) и его соединений имеют широкие перспективы использования в качестве катализаторов в химической, фармацевтической и пищевой промышленности, конструкционных материалов в электронике и фотонике, при производстве источников тока, медицинских лекарственных и диагностических препаратов, пестицидов. Объем годового производства этих веществ в наноформе измеряется десятками тонн и будет в дальнейшем еще более возрастать. Наноформы Ni и его соединений, по данным многочисленных исследований, обладают токсичностью в отношении многих типов клеток, стимулируют процессы апоптоза и могут вызывать злокачественную трансформацию in vitro. Это указывает на данную группу наноматериалов как возможный источник риска для здоровья человека. Необходимым звеном в оценке риска является количественная характеристика опасности, то есть установление токсических и максимальных недействующих доз наноматериала при его поступлении в организм через дыхательные пути, неповрежденную кожу и желудочно-кишечный тракт. В экспериментах in vivo на лабораторных животных для Ni-содержащих наноматериалов отмечены общетоксическое, органотоксическое (включая гепатотоксическое и кардиотоксическое), атерогенное, аллергенное, иммунотоксическое действия, репродуктивная токсичность. Имеются многочисленные данные, свидетельствующие о наличии у всех Ni-cодержащих наноматериалов генотоксичности и мутагенности, хотя сведения об их возможном канцерогенном потенциале ограничены. Факторами, определяющими токсичность Ni и его соединений в наноформе, являются их способности к проникновению через биологические барьеры и высвобождению свободных ионов Ni++ в биологических средах. В обзоре выполнен анализ и обобщение данных о проявлениях токсичности in vivo и действующих токсических дозах при различных путях поступления в организм Ni и его соединений в наноформе за период преимущественно с 2011 г.

Еще

Никель, оксид никеля, наночастицы, генотоксичность, аллергенность, репродуктивная токсичность, канцерогенность, производственная экспозиция, оценка риска

Короткий адрес: https://sciup.org/142231428

IDR: 142231428   |   DOI: 10.21668/health.risk/2021.3.18

Список литературы Оценка риска никельсодержащих наноматериалов: характеристика опасности in vivo

  • High-throughput transcriptomics: insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species / S.I.L. Gomes, C.P. Roca, J.J. Scott-Fordsmand, M.J.B. Amorim // Environ Pollut. – 2019. – Vol. 245. – P. 131–140. DOI: 10.1016/j.envpol.2018.10.123
  • Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors, a self-overview / B. Katsnelson, L. Privalova, M.P. Sutunkova, V.B. Gurvich, N.V. Loginova, I.A. Minigalieva, E.P. Kireyeva, V.Y. Shur [et al.] // Int. J. Nanomed. – 2015. – Vol. 10. – P. 3013–3029. DOI: 10.2147/IJN.S80843
  • Magaye R., Zhao J. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity // Environ. Toxicol. Pharmacol. – 2012. – Vol. 34, № 3. – P. 644–650. DOI: 10.1016/j.etap.2012.08.012
  • Nanomaterial induced immune responses and cytotoxicity / A. Ali, M. Suhail, S. Mathew, M.A. Shah, S.M. Harakeh, S. Ahmad, Z. Kazmi, M.A.R. Alhamdan [et al.] // J. Nanosci. Nanotechnol. – 2016. – Vol. 16, № 1. – P. 40–57. DOI: 10.1166/jnn.2016.10885
  • Kornick R., Zug K.A. Nickel // Dermatitis. – 2008. – Vol. 19. – P. 3–8.
  • Acute toxicity of nickel nanoparticles in rats after intravenous injection / R.R. Magaye, X. Yue, B. Zou, H. Shi, H. Yu,K. Liu, X. Lin, J. Xu [et al.] // Int. J. Nanomed. – 2014. – Vol. 9. – P. 1393–1402. DOI: 10.2147/ijn.S56212
  • Biochemical, toxicological, and histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles / A. Marzban, B. Seyedalipour, M. Mianabady, A. Taravati, S.M. Hoseini // Biol. Trace Elem. Res. – 2020. – Vol. 196, № 2. – P. 528–536. DOI: 10.1007/s12011-019-01941-x
  • Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles / B.A. Katsnelson, I.A. Minigaliyeva, V.G. Panov, L.I. Privalova, A.N. Varaksin, V.B. Gurvich, M.P. Sutunkova, V.Ya. Shur [et al.] // Food Chem. Toxicol. – 2015. – Vol. 86. – P. 351–364. DOI: 10.1016/j.fct.2015.11.012
  • Exposure to variable doses of nickel oxide nanoparticles disturbs serum biochemical parameters and oxidative stress biomarkers from vital organs of albino mice in a sex-specific manner / M.F. Hussain, M.N. Ashiq, M. Gulsher, A. Akbar, F. Iqbal // Biomarkers. – 2020. – Vol. 25, № 8. – P. 719–724. DOI: 10.1080/1354750X.2020.1841829
  • Cinnamomum cassia ameliorates Ni-NPs-induced liver and kidney damage in male Sprague Dawley rats / S. Iqbal, F. Jabeen, C. Peng, M.U. Ijaz, A.S. Chaudhry // Hum. Exp. Toxicol. – 2020. – Vol. 39, № 11. – P. 1565–1581. DOI: 10.1177/0960327120930125
  • Expression of cytokine-induced neutrophil chemoattractant in rat lungs by intratracheal instillation of nickel oxidenanoparticles / K. Nishi, Y. Morimoto, A. Ogami, M. Murakami, T. Myojo, T. Oyabu, C. Kadoya, M. Yamamoto [et al.] // Inhal. Toxicol. – 2009. – Vol. 21, № 12. – P. 1030–1039. DOI: 10.1080/08958370802716722
  • Expression of cytokine-induced neutrophil chemoattractant in rat lungs following an intratracheal instillation of micronsized nickel oxide nanoparticle agglomerate / Y. Morimoto, M. Hirohashi, A. Ogami, T. Oyabu, T. Myojo, M. Hashiba, Y. Mizuguchi, T. Kambara [et al.] // Toxicol. Industrial Health. – 2014. – Vol. 30, № 9. – P. 851–860. DOI: 10.1177/0748233712464807
  • Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles / Y. Morimoto, A. Ogami, M. Todoroki, M. Yamamoto, M. Murakami, M. Hirohashi, T. Oyabu, T. Myojo [et al.] // Nanotoxicology. – 2010. – Vol. 4, № 2. – P. 161–176. DOI: 10.3109/17435390903518479
  • Kinetics and dissolution of intratracheally administered nickel oxide nanomaterials in rats / N. Shinohara, G. Zhang, Y. Oshima, T. Kobayashi, N. Imatanaka, M. Nakai, T. Sasaki, K. Kawaguchi, M. Gamo // Part. Fibre Toxicol. – 2017. – Vol. 14, № 1. – P. 48. DOI: 10.1186/s12989-017-0229-x
  • Changes over time in pulmonary inflammatory response in rat lungs after intratracheal instillation of nickel oxide nanoparticles / K. Nishi, C. Kadoya, A. Ogami, T. Oyabu, Y. Morimoto, S. Ueno, T. Myojo // J. Occup. Health. – 2020. – Vol. 62, № 1. – P. e12162. DOI: 10.1002/1348-9585.12162
  • Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung / T. Sager, M. Wolfarth, M. Keane, D. Porter, V. Castranova, A. Holian // Nanotoxicology. – 2016. – Vol. 10, № 2. – P. 151–161. DOI: 10.3109/17435390.2015.1025883
  • Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats / Z. Cao, Yi. Fang, Y. Lu, F. Qian, Q. Ma, M. He, H. Pi, Z. Yu, Z. Zhou // Int. J. Nanomedicine. – 2016. – Vol. 11. – P. 3331–3346. DOI: 10.2147/IJN.S106912
  • In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles / R. Magaye, Y. Gu, Y. Wang, H. Su, Q. Zhou, G. Mao, H. Shi, X. Yue [et al.] // J. Mol. Histol. – 2016. – Vol. 47, № 3. – P. 273–286. DOI: 10.1007/s10735-016-9671-6
  • Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice / K.-J. Bai, K.-J. Chuang, J.-K. Chen, H.-E. Hua, Y.-L. Shen, W.-N. Liao, C.-H. Lee, K.-Y. Chen [et al.] // Nanomedicine. – 2018. – Vol. 14, № 7. – P. 2329–2339. DOI: 10.1016/j.nano.2017.10.003
  • Biopersistence of NiO and TiO2 nanoparticles following intratracheal instillation and inhalation / T. Oyabu, T. Myojo,B.W. Lee, T. Okada, H. Izumi, Y. Yoshiura, T. Tomonaga, Y.S. Li [et al.] // Int. J. Mol. Sci. – 2017. – Vol. 18, № 12. – P. 2757. DOI: 10.3390/ijms18122757
  • The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: in vitro and in vivo studies / Y. Mo, Y. Zhang, L. Mo, R. Wan, M. Jiang, Q. Zhang // Environ. Pollut. – 2020. – Vol. 267. – P. 115597. DOI: 10.1016/j.envpol.2020.115597
  • miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis / Y. Mo, Y. Zhang, R. Wan, M. Jiang,Y. Xu, Q. Zhang // Nanotoxicology. – 2020. – Vol. 14, № 9. – P. 1175–1197. DOI: 10.1080/17435390.2020.1808727
  • Comparative mouse lung injury by nickel nanoparticles with differential surface modification / Y. Mo, M. Jiang, Y. Zhang, R. Wan, J. Li, C.J. Zhong, H. Li, S. Tang, Q. Zhang // J. Nanobiotechnology. – 2019. – Vol. 17, № 1. – P. 2. DOI: 10.1186/s12951-018-0436-0
  • Inter-laboratory comparison of pulmonary lesions induced by intratracheal instillation of NiO nanoparticle in rats: histopathological examination results / H. Senoh, H. Kano, M. Suzuki, S. Fukushima, Y. Oshima, T. Kobayashi, Y. Morimoto, H. Izumi [et al.] // J. Occup. Health. – 2020. – Vol. 62, № 1. – P. e12117. DOI: 10.1002/1348-9585.12117
  • Comparison of single or multiple intratracheal administration for pulmonary toxic responses of nickel oxide nanoparticles in rats / H. Senoh, H. Kano, M. Suzuki, M. Ohnishi, H. Kondo, K. Takanobu, Y. Umeda, S. Aiso, S. Fukushima // J. Occup. Health. – 2017. – Vol. 59, № 2. – P. 112–121. DOI: 10.1539/joh.16-0184-OA
  • Nickel oxide nanoparticles induce hepatocyte apoptosis via activating endoplasmic reticulum stress pathways in rats / X. Chang, F. Liu, M. Tian, H. Zhao, A. Han, Y. Sun // Environ. Toxicol. – 2017. – Vol. 32, № 12. – P. 2492–2499. DOI: 10.1002/tox.22492
  • Nickel oxide nanoparticles induced pulmonary fibrosis via TGF-1 activation in rats / X.H. Chang, A. Zhu, F.F. Liu, L.Y. Zou, L. Su, S.K. Liu, H.H. Zhou, Y.Y. Sun [et al.] // Hum. Exp. Toxicol. – 2017. – Vol. 36, № 8. – P. 802–812. DOI: 10.1177/0960327116666650
  • Role of nitrative stress in nano nickel oxide-induced lung injury in rats / S. Liu, A. Zhu, X. Chang, Y. Sun, H. Zhou, Y. Sun, L. Zou, Y. Sun, L. Su // Wei Sheng Yan Jiu. – 2016. – Vol. 45, № 4. – P. 563–567.
  • Role of NF-B activation and Th1/Th2 imbalance in pulmonary toxicity induced by nano NiO / X. Chang, A. Zhu, F. Liu, L. Zou, L. Su, S. Li, Y. Sun // Environ. Toxicol. – 2017. – Vol. 32, № 4. – P. 1354–1362. DOI: 10.1002/tox.22329
  • Role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles in rats / S. Yu, F. Liu, C. Wang, J. Zhang, A. Zhu, L. Zou, A. Han, J. Li [et al.] // Mol. Med. Rep. – 2018. – Vol. 17, № 2. – P. 3133–3139. DOI: 10.3892/mmr.2017.8226
  • Sex differences in the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles / D.J. You, H.Y. Lee, A.J. Taylor-Just, K.E. Linder, J.C. Bonner // Nanotoxicology. – 2020. – Vol. 14, № 8. – P. 1058–1081. DOI: 10.1080/17435390.2020.1808105
  • TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro / Q. Zhang, X. Chang, H. Wang, Y. Liu, X. Wang, M. Wu, H. Zhan, S. Li, Y. Sun // Environ. Toxicol. – 2020. – Vol. 35, № 4. – P. 419–429. DOI: 10.1002/tox.22878
  • Comparison of dose-response relations between 4-week inhalation and intratracheal instillation of NiO nanoparticles using polimorphonuclear neutrophils in bronchoalveolar lavage fluid as a biomarker of pulmonary inflammation / Y. Mizuguchi, T. Myojo, T. Oyabu, M. Hashiba, B.W. Lee, M. Yamamoto, M. Todoroki, K. Nishi [et al.] // Inhal. Toxicol. – 2013. – Vol. 25, № 1. – P. 29–36. DOI: 10.3109/08958378.2012.751470
  • Comparison of the pulmonary oxidative stress caused by intratracheal instillation and inhalation of NiO nanoparticles when equivalent amounts of NiO are retained in the lung / M. Horie, Y. Yoshiura, H. Izumi, T. Oyabu, T. Tomonaga, T. Okada, B.-W. Lee, T. Myojo, M. Kubo [et al.] // Antioxidants (Basel). – 2016. – Vol. 5, № 1. – P. 4. DOI: 10.3390/antiox5010004
  • Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: fullerenes, nickel oxide and multiwalled carbon nanotubes / C. Kadoya, B.-W. Lee, A. Ogami, T. Oyabu, K.-I. Nishi, M.Yamamoto, M. Todoroki, Y. Morimoto [et al.] // Nanotoxicology. – 2016. – Vol. 10, № 2. – P. 194–203. DOI: 10.3109/17435390.2015.1039093
  • Toxic effects of low-level long-term inhalation exposures of rats to nickel oxide nanoparticles / M.P. Sutunkova, S.N. Solovyeva, I.A. Minigalieva, V.B. Gurvich, I.E. Valamina, O.H. Makeyev, V.Ya. Shur, E.V. Shishkina [et al.] // Int. J. Mol. Sci. – 2019. – Vol. 20, № 7. – P. 1778. DOI: 10.3390/ijms20071778
  • The most important inferences from the Ekaterinburg nanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles / M.P. Sutunkova, L.I. Privalova, I.A. Minigalieva, V.B. Gurvich, V.G. Panov, B.A. Katsnelson // Toxicol Rep. – 2018. – Vol. 5. – P. 363–376. DOI: 10.1016/j.toxrep.2018.03.008
  • Inhaled nickel nanoparticles alter vascular reactivity in C57BL/6 mice / A.K. Cuevas, E.N. Liberda, P.A. Gillespie, J. Allina, L.C. Chen // Inhal. Toxicol. – 2010. – Vol. 22, suppl. 2. – P. 100–106. DOI: 10.3109/08958378.2010.521206
  • The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells / E.N. Liberda, A.K. Cuevas, Q. Qu, L.C. Chen // Inhal. Toxicol. – 2014. – Vol. 26, № 10. – P. 588–597. DOI: 10.3109/08958378.2014.937882
  • Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model / G.S. Kang, P.A. Gillespie, A. Gunnison, A.L. Moreira, K.-M. Tchou-Wong, L.-C. Chen // Environ. Health Perspect. – 2011. – Vol. 119, № 2. – P. 176–181. DOI: 10.1289/ehp.1002508
  • Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure / N. Dumala, B. Mangalampalli, S. Chinde, S.I. Kumari, M. Mahoob, M.F. Rahman, P. Grover // Mutagenesis. – 2017. – Vol. 32, № 4. – P. 417–427. DOI: 10.1093/mutage/gex007
  • Biochemical alterations induced by nickel oxide nanoparticles in female Wistar albino rats after acute oral exposure / N. Dumala, B. Mangalampalli, S.S.K. Kamal, P. Grover // Biomarkers. – 2018. – Vol. 23, № 1. – P. 33–43. DOI: 10.1080/1354750X.2017.1360943
  • Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats: a histological and biochemical perspective / N. Dumala, B. Mangalampalli, S.S.K. Kamal, P. Grover // J. Appl. Toxicol. – 2019. – Vol. 39, № 7. – P. 1012–1029. DOI: 10.1002/jat.3790
  • Mechanisms involved in reproductive toxicity caused by nickel nanoparticle in female rats / L. Kong, X. Gao, J. Zhu, K. Cheng, M. Tang // Environ. Toxicol. – 2016. – Vol. 31, № 11. – P. 1674–1683. DOI: 10.1002/tox.22288
  • Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats / L. Kong, W. Hu, C. Lu, K. Cheng, M. Tang // Chemosphere. – 2019. – Vol. 218. – P. 259–265. DOI: 10.1016/j.chemosphere.2018.11.128
  • p53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats / Q. Saquib, S.M. Attia, S.M. Ansari, A. Al-Salim, M. Faisal, A.A. Alatar, J. Musarrat, X. Zhang, A.A. Al-Khedhairy // Int. J. Biol. Macromol. – 2017. – Vol. 105, Pt. 1. – P. 228–237. DOI: 10.1016/j.ijbiomac.2017.07.032
  • Ali A.A.-M. Evaluation of some biological, biochemical, and hematological aspects in male albino rats after acute exposure to the nano-structured oxides of nickel and cobalt // Environ. Sci. Pollut. Res. Int. – 2019. – Vol. 26, № 17. – P. 17407–17417. DOI: 10.1007/s11356-019-05093-2
  • Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles / T. Hansen, G. Clermont, A. Alves, R. Eloy, C. Brochhausen, J.P. Boutrand, A.M. Gatti, C.J. Kirkpatrick // J. R. Soc. Interface. – 2006. – Vol. 3. – P. 767–775.
  • Salnikow K., Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium // Chem. Res. Toxicol. – 2008. – Vol. 21, № 1. – P. 28–44. DOI: 10.1021/tx700198a
  • Muñoz A., Costa M. Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity // Toxicol. Appl. Pharmacol. – 2012. – Vol. 260, № 1. – P. 1–16. DOI: 10.1016/j.taap.2011.12.014
  • Borowska S., Brzóska M.M. Metals in cosmetics: implications for human health // J. Appl. Toxicol. – 2015. – Vol. 35,№ 6. – P. 551–752. DOI: 10.1002/jat.3129
  • Nickel oxide nanoparticles can recruit eosinophils in the lungs of rats by the direct release of intracellular eotaxin / S. Lee, S.-H. Hwang, Ji. Jeong, Y. Han, S.-H. Kim, D.-K. Lee, H.-S. Lee, S.-T. Chung // Part. Fibre Toxicol. – 2016. – Vol. 13, № 1. – P. 30. DOI: 10.1186/s12989-016-0142-8
  • Nickel nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21, T-bet / E.E. Glista-Baker, A.J. Taylor, B.C. Sayers, E.A. Thompson, J.C. Bonner // Part. Fibre Toxicol. – 2014. – Vol. 11. – P. 7. DOI: 10.1186/1743-8977-11-7
  • Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model / K.A. Roach, S.E. Anderson, A.B. Stefaniak, H.L. Shane, V. Kodali, M. Kashon, J.R. Roberts // Inhal. Toxicol. – 2019. – Vol. 31, № 8. – P. 299–324. DOI: 10.1080/08958378.2019.1680775
  • Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice / T. Hirai, Y. Yoshioka, N. Izumi, K.-I. Ichihashi, T. Handa, N. Nishijima, E. Uemura, K.-I. Sagami [et al.] // Nat. Nanotechnol. – 2016. – Vol. 11, № 9. – P. 808–816. DOI: 10.1038/nnano.2016.88
  • Study on the damage of sperm induced by nickel nanoparticle exposure / W. Hu, Z. Yu, X. Gao, Y. Wu, M. Tang, Lu.Kong // Environ. Geochem. Health. – 2020. – Vol. 42, № 6. – P. 1715–1724. DOI: 10.1007/s10653-019-00364-w
  • Impact of subchronic exposure to low-dose nano-nickel oxide on the reproductive function and offspring of male rats /X.-J. Fan, F.-B. Yu, H.-M. Gu, L.-M. You, Z.-H. Du, J.-X. Gao, Y.-Y. Niu // Zhonghua Nan Ke Xue. – 2019. – Vol. 25, № 5. – P. 392–398.
  • Intracellular heavy metal nanoparticle storage: progressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy / T. Iannitti, S. Capone, A. Gatti, F. Capitani, F. Cetta, B. Palmieri // Int. J. Nanomed. – 2010. – Vol. 5. – P. 955–960. DOI: 10.2147/ijn.S14363
  • Journeay W.S., Goldman R.H. Occupational handling of nickel nanoparticles: a case report // Am. J. Industrial Med. –2014. – Vol. 57, № 9. – P. 1073–1076. DOI: 10.1002/ajim.22344
  • Pulmonary and systemic toxicity following exposure to nickel nanoparticles / J. Phillips, F. Green, J.C.A. Davies, J. Murray // Am. J. Industrial Med. – 2010. – Vol. 53, № 8. – P. 763–767. DOI: 10.1002/ajim.20855
  • Развитие системы оценки безопасности и контроля наноматериалов и нанотехнологий в Российской Федерации / Г.Г. Онищенко, В.А. Тутельян, И.В. Гмошинский, С.А. Хотимченко // Гигиена и санитария. – 2013. – № 1. – С. 4–11.
Еще
Статья обзорная